首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10937篇
  免费   1074篇
  国内免费   18篇
  12029篇
  2022年   65篇
  2021年   110篇
  2020年   65篇
  2019年   102篇
  2018年   117篇
  2017年   135篇
  2016年   225篇
  2015年   357篇
  2014年   433篇
  2013年   511篇
  2012年   735篇
  2011年   722篇
  2010年   512篇
  2009年   446篇
  2008年   672篇
  2007年   705篇
  2006年   640篇
  2005年   663篇
  2004年   659篇
  2003年   654篇
  2002年   666篇
  2001年   127篇
  2000年   96篇
  1999年   117篇
  1998年   194篇
  1997年   134篇
  1996年   116篇
  1995年   118篇
  1994年   119篇
  1993年   109篇
  1992年   95篇
  1991年   96篇
  1990年   82篇
  1989年   89篇
  1988年   86篇
  1987年   78篇
  1986年   83篇
  1985年   77篇
  1984年   93篇
  1983年   89篇
  1982年   104篇
  1981年   116篇
  1980年   105篇
  1979年   64篇
  1978年   59篇
  1977年   47篇
  1976年   58篇
  1974年   50篇
  1973年   46篇
  1972年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Biofabrication with chitosan   总被引:14,自引:0,他引:14  
The traditional motivation for integrating biological components into microfabricated devices has been to create biosensors that meld the molecular recognition capabilities of biology with the signal processing capabilities of electronic devices. However, a different motivation is emerging; biological components are being explored to radically change how fabrication is achieved at the micro- and nanoscales. Here we review biofabrication, the use of biological materials for fabrication, and focus on three specific biofabrication approaches: directed assembly, where localized external stimuli are employed to guide assembly; enzymatic assembly, where selective biocatalysts are enlisted to build macromolecular structure; and self-assembly, where information internal to the biological material guides its own assembly. Also reviewed are recent results with the aminopolysaccharide chitosan, a material that offers a combination of properties uniquely suited for biofabrication. In particular, chitosan can be directed to assemble in response to locally applied electrical signals, and the chitosan backbone provides sites that can be employed for the assembly of proteins, nucleic acids, and virus particles.  相似文献   
63.
Alzheimer’s disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Aβ) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Aβ. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Aβ in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A2 (PLA2) and secretory PLA2. In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Aβ NADPH oxidase and PLA2 can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease.  相似文献   
64.
65.
Cerebral cavernous malformations (CCM) are sporadic or inherited vascular lesions of the central nervous system characterized by dilated, thin-walled, leaky vessels. Linkage studies have mapped autosomal dominant mutations to three loci: ccm1 (KRIT1), ccm2 (OSM), and ccm3 (PDCD10). All three proteins appear to be scaffolds or adaptor proteins, as no enzymatic function can be attributed to them. Our previous results demonstrated that OSM is a scaffold for the assembly of the GTPase Rac and the MAPK kinase kinase MEKK3, for the hyperosmotic stress-dependent activation of p38 MAPK. Herein, we show that the three CCM proteins are members of a larger signaling complex. To define this complex, epitope-tagged wild type OSM or OSM harboring the mutation of F217-->A, which renders the OSM phosphotyrosine binding (PTB) domain unable to bind KRIT1, were stably introduced into RAW264.7 mouse macrophages. FLAG-OSM or FLAG-OSMF217A and the associated complex members were purified by immunoprecipitation using anti-FLAG antibody. OSM binding partners were identified by gel-based methods combined with electrospray ionization-MS or by multidimensional protein identification technology (MudPIT). Previously identified proteins that associate with OSM including KRIT1, MEKK3, Rac, and the KRIT1-binding protein ICAP-1 were found in the immunoprecipitates. In addition, we show for the first time that PDCD10 binds to OSM and is found in cellular CCM complexes. Other prominent proteins that bound the CCM complex include EF1A1, RIN2, and tubulin, with each interaction disrupted with the OSMF217A mutant protein. We further show that PDCD10 binds phosphatidylinositol di- and triphosphates and OSM binds phosphatidylinositol monophosphates. The findings define the targeting of the CCM complex to membranes and to proteins regulating trafficking and the cytoskeleton.  相似文献   
66.
In the case of most optical imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached fluorophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two-photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.  相似文献   
67.
Recent clinical evidence supports a link between 25-hydroxyvitamin D insufficiency (serum 25-hydroxyvitamin D [25(OH)D] levels <30 ng/mL) and Parkinson's disease. To investigate the effect of 25(OH)D depletion on neuronal susceptibility to toxic insult, we induced a state of 25(OH)D deficiency in mice and then challenged them with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found there was no significant difference between control and 25(OH)D-deficient animals in striatal dopamine levels or dopamine transporter and tyrosine hydroxylase expression after lesioning with MPTP. Additionally, we found no difference in tyrosine hydroxylase expression in the substantia nigra pars compacta. Our data suggest that reducing 25(OH)D serum levels in mice has no effect on the vulnerability of nigral dopaminergic neurons in vivo in this model system of parkinsonism.  相似文献   
68.
69.
Analysis of the restriction enzyme digests of total genomic DNAs from a broad spectrum of human cell lines and from individuals with different genetic backgrounds, by hybridization with a series of cloned human histone sequences, indicated restriction site polymorphisms (RSPs) for two adjacent human histone genes which reside on chromosome 1. In most cell lines and individuals examined we observed a single 2.05 kb H4 histone HindIII fragment and a 7.0 kb H3 histone HindIII fragment. In contrast, the polymorphisms were manifested as a 2.15 kb H4 HindIII fragment and a 9.1 kb H3 HindIII fragment. From population studies, we were able to show that there is no linkage disequilibrium between these two polymorphic restriction sites. Nor was there any apparent correlation between the presence of the H3/H4 histone polymorphisms and maintenance of the transformed karyotype, passage in culture, transformation or tumor progression. These chromosome 1 H3 and H4 histone gene polymorphisms are common in the American Black population and, in our survey of individuals, were not found in the American Caucasian population. Among the American Blacks studied, the frequency of the H3 HindIII(-) allele is 43% and of the H4 HindIII(-) allele 30%. In limited family studies, we were unable to detect recombination between these two physically linked alleles.  相似文献   
70.
The DNA sequence for Kaposi’s sarcoma-associated herpesvirus was originally detected in Kaposi’s sarcoma biopsy specimens. Since its discovery, it has been possible to detect virus in cell lines established from AIDS-associated body cavity-based B-cell lymphoma and to propagate virus from primary Kaposi’s sarcoma lesions in a human renal embryonic cell line, 293. In this study, we analyzed the infectivity of Kaposi’s sarcoma-associated herpesvirus produced from these two sources. Viral isolates from cultured cutaneous primary KS cells was transmitted to an Epstein-Barr virus-negative Burkitt’s B-lymphoma cell line, Louckes, and compared to virus induced from a body cavity-based B-cell lymphoma cell line. While propagation of body cavity-based B-cell lymphoma-derived virus was not observed in 293 cell cultures, infection with viral isolates obtained from primary Kaposi’s sarcoma lesions induced injury in 293 cells typical of herpesvirus infection and was associated with apoptotic cell death. Interestingly, transient overexpression of the Kaposi’s sarcoma-associated herpesvirus v-Bcl-2 homolog delayed the process of apoptosis and prolonged the survival of infected 293 cells. In contrast, the broad-spectrum caspase inhibitors Z-VAD-fmk and Z-DEVD-fmk failed to protect infected cell cultures, suggesting that Kaposi’s sarcoma-associated herpesvirus-induced apoptosis occurs through a Bcl-2-dependent pathway. Kaposi’s sarcoma-associated herpesvirus isolates from primary Kaposi’s sarcoma lesions and body cavity-based lymphomas therefore may differ and are likely to have distinct contributions to the pathophysiology of Kaposi’s sarcoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号