首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10734篇
  免费   1068篇
  国内免费   17篇
  2022年   63篇
  2021年   104篇
  2020年   61篇
  2019年   100篇
  2018年   115篇
  2017年   134篇
  2016年   225篇
  2015年   354篇
  2014年   426篇
  2013年   507篇
  2012年   723篇
  2011年   716篇
  2010年   503篇
  2009年   440篇
  2008年   663篇
  2007年   697篇
  2006年   627篇
  2005年   657篇
  2004年   651篇
  2003年   648篇
  2002年   662篇
  2001年   119篇
  2000年   89篇
  1999年   115篇
  1998年   192篇
  1997年   132篇
  1996年   115篇
  1995年   117篇
  1994年   118篇
  1993年   109篇
  1992年   89篇
  1991年   87篇
  1990年   72篇
  1989年   85篇
  1988年   81篇
  1987年   72篇
  1986年   80篇
  1985年   75篇
  1984年   92篇
  1983年   87篇
  1982年   104篇
  1981年   115篇
  1980年   104篇
  1979年   62篇
  1978年   60篇
  1977年   47篇
  1976年   58篇
  1974年   50篇
  1973年   45篇
  1972年   42篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Enterococcus faecalis pCF10 transfers at high frequencies upon pheromone induction of the prgQ transfer operon. This operon codes for three cell wall‐anchored proteins – PrgA, PrgB (aggregation substance) and PrgC – and a type IV secretion system through which the plasmid is delivered to recipient cells. Here, we defined the contributions of the Prg surface proteins to plasmid transfer, biofilm formation and virulence using the Caenorhabditis elegans infection model. We report that a combination of PrgB and extracellular DNA (eDNA), but not PrgA or PrgC, was required for extensive cellular aggregation and pCF10 transfer at wild‐type frequencies. In addition to PrgB and eDNA, production of PrgA was necessary for extensive binding of enterococci to abiotic surfaces and development of robust biofilms. However, although PrgB is a known virulence factor in mammalian infection models, we determined that PrgA and PrgC, but not PrgB, were required for efficient killing in the worm infection model. We propose that the pheromone‐responsive, conjugative plasmids of E. faecalis have retained Prg‐like surface functions over evolutionary time for attachment, colonization and robust biofilm development. In natural settings, these biofilms are polymicrobial in composition and constitute optimal environments for signal exchange, mating pair formation and widespread lateral gene transfer.  相似文献   
992.
993.
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.  相似文献   
994.
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.  相似文献   
995.
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.  相似文献   
996.
A truly disordered protein lacks a stable fold and its backbone amide protons exchange with solvent at rates predicted from studies of unstructured peptides. We have measured the exchange rates of two model disordered proteins, FlgM and α-synuclein, in buffer and in Escherichia coli using the NMR experiment, SOLEXSY. The rates are similar in buffer and cells and are close to the rates predicted from data on small, unstructured peptides. This result indicates that true disorder can persist inside the crowded cellular interior and that weak interactions between proteins and macromolecules in cells do not necessarily affect intrinsic rates of exchange.  相似文献   
997.
C. elegans MnSOD‐3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD‐3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41–54). We have determined the structure of the MnSOD‐3‐azide complex to 1.77‐Å resolution. Analysis of this complex shows that the substrate analog, azide, binds end‐on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substrate access funnel. This is the first structure of a eukaryotic MnSOD‐azide complex that demonstrates the extended, uninterrupted hydrogen‐bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5‐6‐5 catalytic mechanism for MnSOD. The high product dissociation constant k4 of MnSOD‐3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.  相似文献   
998.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein.  相似文献   
999.
HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N′-((5′-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis.  相似文献   
1000.
Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号