首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10740篇
  免费   1068篇
  国内免费   18篇
  11826篇
  2022年   65篇
  2021年   104篇
  2020年   61篇
  2019年   100篇
  2018年   115篇
  2017年   134篇
  2016年   225篇
  2015年   354篇
  2014年   426篇
  2013年   507篇
  2012年   723篇
  2011年   716篇
  2010年   503篇
  2009年   440篇
  2008年   663篇
  2007年   697篇
  2006年   627篇
  2005年   657篇
  2004年   651篇
  2003年   648篇
  2002年   662篇
  2001年   119篇
  2000年   89篇
  1999年   115篇
  1998年   192篇
  1997年   132篇
  1996年   115篇
  1995年   117篇
  1994年   118篇
  1993年   109篇
  1992年   89篇
  1991年   87篇
  1990年   72篇
  1989年   85篇
  1988年   81篇
  1987年   72篇
  1986年   80篇
  1985年   75篇
  1984年   92篇
  1983年   87篇
  1982年   104篇
  1981年   115篇
  1980年   104篇
  1979年   62篇
  1978年   60篇
  1977年   47篇
  1976年   58篇
  1974年   50篇
  1973年   45篇
  1972年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Abstract: Physostigmine, the acetylcholinesterase inhibitor (0.3 mg/kg, i.m.), increased extracellular glutamate but not aspartate concentrations in the striatum of anaesthetised rats, determined using microdialysis and HPLC. The rise was both tetrodotoxin and calcium dependent. In contrast, neither physostigmine (10 µ M ) added to the perfusion fluid nor vehicle (injected intramuscularly) affected amino acid concentrations. To obtain evidence that the action of acetylcholine was to modulate positively cortical pyramidal neurone activity via the M1 receptor, the selective M1 agonist PD 142505-0028 (10 µ M ) was topically applied to the frontal cortex. Like physostigmine, PD 142505-0028 rapidly increased glutamate but not aspartate concentrations in the striatum. Moreover, the effect of intramuscular physostigmine was blocked by a topically applied M1 antagonist. These new data add to our hypothesis that cholinomimetics increase pyramidal neurone function.  相似文献   
132.
Each cryptomonad strain contains only a single spectroscopic type of biliprotein. These biliproteins are isolated as 50000 kDa '2 complexes which carry one bilin on the and three on the subunit. Six different bilins are present on the cryptomonad biliproteins, two of which (phycocyanobilin and phycoerythrobilin) also occur in cyanobacterial and rhodophytan biliproteins, while four are known only in the cryptomonads. The subunit is encoded on the chloroplast genome, whereas the subunits are encoded by a small nuclear multigene family. The subunits of all cryptomonad biliproteins, regardless of spectroscopic type, have highly conserved amino acid sequences, which show > 80% identity with those of rhodophytan phycoerythrin subunits. In contrast, cyanobacteria and red algal chloroplasts each contain several spectroscopically distinct biliproteins organized into macromolecular complexes (phycobilisomes). The data on biliproteins, as well as several other lines of evidence, indicate that the cryptomonad biliprotein antenna system is primitive and antedates that of the cyanobacteria. It is proposed that the gene encoding the cryptomonad biliprotein subunit is the ancestral gene of the gene family encoding cyanobacterial and rhodophytan biliprotein and subunits.Abbreviations Chl chlorophyll - CER chloroplast endoplasmic reticulum - SSU rRNA small subunit ribosomal RNA  相似文献   
133.
The organization and nucleotide sequence of a gene from Chlamydomonas reinhardtii encoding a member of the DNA photolyase/blue light photoreceptor protein family is reported. A region of over 7 kb encompassing the gene was sequenced. Northern analysis detected a single 4.2 kb mRNA. The gene consists of eight exons and seven introns, and encodes a predicted protein of 867 amino acids. The first 500 amino acids exhibit significant homology with previously sequenced DNA photolyases, showing the closest relationship to mustard (Sinapis alba) photolyase (43% identity). An even higher identity, 49%, is obtained when the Chlamydomonas gene product is compared to the putative blue-light photoreceptor (HY4) from Arabidopsis thaliana. Both the Chlamydomonas and the Arabidopsis proteins differ from the well characterized DNA photolyases in that they contain a carboxyl terminal extension of 367 and 181 amino acids, respectively. However, there is very little homology between the carboxyl terminal domains of the two proteins. A previously isolated Chlamydomonas mutant, phrl, which is deficient in DNA photolyase activity, especially in the nucleus, was shown by RFLP analysis not to be linked to the gene we have isolated. We propose this gene encodes a candidate Chlamydomonas blue light photoreceptor.  相似文献   
134.
135.
136.
Relative limitations of nitrogen (N) status on the processescontributing to photosynthetic rate (A) were investigated. Jackpine {Pinus banksiana Lamb.) seedlings from seeds grown in sandculture were supplied with four different N treatments for 6weeks, which resulted in a needle N content ranging from 50–85mmol m–2 (14–32 mg g–1 dry weight). Leaf gasexchange at varying CO2 levels was measured and limitationson A350 (A at ambient CO2 level) caused by finite, limitingcarboxylation efficiency (c.e.), maximum A (Amax)and stomatalconductance were estimated from an analysis of the responseof A to internal CO2 concentration. Although c.e. and Amax decreasedlinearly with the decline in needle N, the magnitudes of theirchanges relative to A350 differed. Amax varied with A350 andalways exceeded A350 by 37–38% c.e., however, declinedfaster than A350, as needle N level decreased. Consequently,relative limitation on A350 caused by inefficient Amax remainedconstant, but limitations caused by c.e. increased by 10–15%at low N levels. In contrast, the limitation by stomatal conductancedeclined initially, but remained stable when N content droppedbelow 75 mmol m–2. The results suggest: (1) a decreasein biochemical capacity, but not stomatal conductance, contributedto the reduction of A350 induced by N-deficiency in jack pineseedlings; and (2) the capacity of carboxylation appeared tobe impaired more than that of electron transport and/or photophosphorylationand its reduction may be the major reason for the reductionin A350. Key words: A–Ci analysis, carboxylation efficiency, electron transport, nitrogen deficiency, stomatal conductance  相似文献   
137.
A study was undertaken to assess the role of a physiological concentration of glutamine in AS-30D cell metabolism. Flux of14C-glutamine to14CO2 and of14C-acetate to glutamate was detected indicating reversible flux between glutamate and TCA cycle -ketoglutarate. These fluxes were transaminase dependent. A flux analysis was compared using data from three tracers that label -ketoglutarate carbon 5, [2-14C]glucose, [1-14C]acetate and [5-14C]glutamine. The analysis indicated that the probability of flux of TCA cycle -ketoglutarate to glutamate was, at minimum, only slightly less than the probability of flux of -ketoglutarate through -ketoglutarate dehydrogenase. The apparent Km for oxidative flux of [14C]glutamine to14CO2, 0.07 mM, indicated that this flux was at a maximal rate at physiological, 0.75 mM, glutamine. Although oxidative flux through -ketoglutarate dehydrogenase was the major fate of glutamine, flux of glutamine to lipid via reductive carboxylation of -ketoglutarate was demonstrated by measuring incorporation of [5-14C]glutamine into14C-lipid. In media containing glucose (6 mM), and glutamine (0.75 mM) 47 per cent of the lipid synthesized from substrates in the media was derived from glutamine via reductive carboxylation and 49 per cent from glucose. These findings of nearly equal fluxes suggest that lipogenesis via reductive carboxylation may be an important role of glutamine in hepatoma cells.  相似文献   
138.
139.
Individual variability in sucrose consumption is prominent in humans and other species. To investigate the genetic contribution to this complex behavior, we conducted behavioral, electrophysiological, and genetic studies, using male progeny of two inbred mouse strains (C57BL/6ByJ [B6] and 129/J [129]) and their F2 hybrids. Two loci on Chromosome (Chr) 4 were responsible for over 50% of the genetic variability in sucrose intake. These loci apparently modulated intake by altering peripheral neural responses to sucrose. One locus affected the response threshold, whereas the other affected the response magnitude. These findings suggest that the majority of difference in sucrose intake between male B6 and 129 mice is due to polymorphisms of two genes that influence receptor or peripheral nervous system activity. Received: 27 January 1997 / Accepted: 17 March 1997  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号