首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   31篇
  国内免费   1篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   10篇
  2014年   11篇
  2013年   10篇
  2012年   14篇
  2011年   13篇
  2010年   12篇
  2009年   11篇
  2008年   9篇
  2007年   3篇
  2006年   13篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   9篇
  2000年   3篇
  1999年   7篇
  1998年   12篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   11篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   7篇
  1977年   12篇
  1976年   5篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1968年   3篇
  1958年   2篇
  1954年   2篇
  1951年   2篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
91.
A CHO mutant MI8-5 was found to synthesize Man9-GlcNAc2-P-P-dolichol rather than Glc3Man9GlcNAc2-P-P-dolichol as the oligosaccharide-lipid intermediate in N-glycosylation of proteins. MI8-5 cells were incubated with labeled mevalonate, and the prenol was found to be dolichol. The mannose-labeled oligosaccharide released from oligosaccharide-lipid of MI8-5 cells was analyzed by HPLC and alpha-mannosidase treatment, and the data were consistent with a structure of Man9GlcNAc2. In addition, MI8-5 cells did not incorporate radioactivity into oligosaccharide- lipid during an incubation with tritiated galactose, again consistent with MI8-5 cells synthesizing an unglucosylated oligosaccharide-lipid. MI8-5 cells had parental levels of glucosylphosphoryldolichol synthase activity. However, in two different assays, MI8-5 cells lacked dolichol- P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase activity. MI8-5 cells were found to synthesize glucosylated oligosaccharide after they were transfected with Saccharomyces cerevisiae ALG 6, the gene for dolichol-P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase. MI8-5 cells were found to incorporate mannose into protein 2-fold slower than parental cells and to approximately a 2-fold lesser extent.   相似文献   
92.
ANG II increases fluid absorption in proximal tubules from young rats more than those from adult rats. ANG II increases fluid absorption in the proximal nephron, in part, via activation of protein kinase C (PKC). However, it is unclear how age-related changes in ANG II-induced stimulation of the PKC cascade differ as an animal matures. We hypothesized that the response of the proximal nephron to ANG II decreases as rats mature due to a reduction in the amount and activation of PKC rather than a decrease in the number or affinity of ANG II receptors. Because PKC translocates from the cytosol to the membrane when activated, we first measured PKC activity in the soluble and particulate fractions of proximal tubule homogenates exposed to vehicle or 10(-10) M ANG II from young (26 +/- 1 days old) and adult rats (54 +/- 1 days old). ANG II increased PKC activity to the same extent in homogenates from young rats (from 0.119 +/- 0.017 to 0.146 +/- 0.015 U/mg protein) (P < 0.01) and adult rats (from 0.123 +/- 0.020 to 0.156 +/- 0.023 U/mg protein) (P < 0.01). Total PKC activity did not differ between groups (0.166 +/- 0.018 vs. 0.181 +/- 0.023). We next investigated whether activation of the alpha-, beta-, and gamma-PKC isoforms differed by Western blot. In homogenates from young rats, ANG II significantly increased activated PKC-alpha from 40.2 +/- 6.5 to 60.2 +/- 9.5 arbitrary units (AU) (P < 0.01) but had no effect in adult rats (46.1 +/- 5.1 vs. 48.5 +/- 8.2 AU). Similarly, ANG II increased activated PKC-gamma in proximal tubules from young rats from 47.9 +/- 13.2 to 65.6 +/- 16.7 AU (P < 0.01) but caused no change in adult rats. Activated PKC-beta, however, increased significantly in homogenates from both age groups. Specifically, activated PKC-beta increased from 8.6 +/- 1.4 to 12.2 +/- 2.1 AU (P < 0.01) in homogenates from nine young rats and from 19.0 +/- 5.5 to 25.1 +/- 7.1 AU (P < 0.01) in homogenates from 12 adult rats. ANG II did not alter the amount of soluble PKC-alpha, -beta, and -gamma significantly. The total amount of PKC-alpha and -gamma did not differ between homogenates from young and adult rats, whereas the total amount of PKC-beta was 59.7 +/- 10.7 and 144.9 +/- 41.8 AU taken from young and adult rats, respectively (P < 0.05). Maximum specific binding and affinity of ANG II receptors were not significantly different between young and adult rats. We concluded that the primary PKC isoform activated by ANG II changes during maturation.  相似文献   
93.
The Or gene of cauliflower (Brassica oleracea var. botrytis) causes many tissues of the plant to accumulate carotenoids and turn orange, which is suggestive of a perturbation of the normal regulation of carotenogenesis. A series of experiments to explore the cellular basis of the carotenoid accumulation induced by the Or gene was completed. The Or gene causes obvious carotenoid accumulation in weakly or unpigmented tissues such as the curd, pith, leaf bases and shoot meristems, and cryptically in some cells of other organs, including the roots and developing fruits. The dominant carotenoid accumulated is beta-carotene, which can reach levels that are several hundred-fold higher than those in comparable wild-type tissues. The beta-carotene accumulates in plastids mainly as a component of massive, highly ordered sheets. The Or gene does not affect carotenoid composition of leaves, nor does it alter color and chromoplast appearance in flower petals. Interestingly, mRNA from carotenogenic and other isoprenoid biosynthetic genes upstream of the carotenoid pathway was detected both in orange tissues of the mutant, and in comparable unpigmented wild-type tissues. Thus the unpigmented wild-type tissues are likely to be competent to synthesize carotenoids, but this process is suppressed by an unidentified mechanism. Our results suggest that the Or gene may induce carotenoid accumulation by initiating the synthesis of a carotenoid deposition sink in the form of the large carotenoid-sequestering sheets.  相似文献   
94.
95.
96.
97.

Background

The enzyme in matrix metalloproteinase (MMP)-9 has been suggested to be an important determinant of plaque degradation. While several studies have shown elevated levels in patients with coronary heart disease, results in prospective population based studies evaluating MMP-9 in relation to first time coronary events have been inconclusive. As of today, there are four published studies which have measured MMP-9 in serum and none using plasma. Measures of MMP-9 in serum have been suggested to have more flaws than measures in plasma.

Aim

To investigate the independent association between plasma levels of MMP-9 and first-time incidence of coronary events in an 8-year follow-up.

Material and Methods

428 men and 438 women, aged 45–69 years, free of previous coronary events and stroke at baseline, were followed-up. Adjustments were made for sex, age, socioeconomic position, behavioral and cardiovascular risk factors, chronic disease at baseline, depressive symptoms, interleukin-6 and C-reactive protein.

Results

53 events were identified during a risk-time of 6 607 person years. Hazard ratio (HR) for MMP-9 after adjustment for all covariates were HR = 1.44 (1.03 to 2.02, p = 0.033). Overall, the effect of adjustments for other cardiovascular risk factors was low.

Conclusion

Levels of plasma MMP-9 are independently associated with risk of first-time CHD events, regardless of adjustments. These results are in contrast to previous prospective population-based studies based on MMP-9 in serum. It is essential that more studies look at MMP-9 levels in plasma to further evaluate the association with first coronary events.  相似文献   
98.
Variation in mitochondrial DNA is often assumed to be neutral and is used to construct the genealogical relationships among populations and species. However, if extant variation is the result of episodes of positive selection, these genealogies may be incorrect, although this information itself may provide biologically and evolutionary meaningful information. In fact, positive Darwinian selection has been detected in the mitochondrial‐encoded subunits that comprise complex I from diverse taxa with seemingly dissimilar bioenergetic life histories, but the functional implications of the selected sites are unknown. Complex I produces roughly 40% of the proton flux that is used to synthesize ATP from ADP, and a functional model based on the high‐resolution structure of complex I described a unique biomechanical apparatus for proton translocation. We reported positive selection at sites in this apparatus during the evolution of Pacific salmon, and it appeared this was also the case in published reports from other taxa, but a comparison among studies was difficult because different statistical tests were used to detect selection and oftentimes, specific sites were not reported. Here we review the literature of positive selection in mitochondrial genomes, the statistical tests used to detect selection, and the structural and functional models that are currently available to study the physiological implications of selection. We then search for signatures of positive selection among the coding mitochondrial genomes of 237 species with a common set of tests and verify that the ND5 subunit of complex I is a repeated target of positive Darwinian selection in diverse taxa. We propose a novel hypothesis to explain the results based on their bioenergetic life histories and provide a guide for laboratory and field studies to test this hypothesis.  相似文献   
99.

Background  

Enterococci rank among the leading causes of nosocomial infections. The failure to identify pathogen-specific genes in Enterococcus faecalis has led to a hypothesis where the virulence of different strains may be linked to strain-specific genes, and where the combined endeavor of the different gene-sets result in the ability to cause infection. Population structure studies by multilocus sequence typing have defined distinct clonal complexes (CC) of E. faecalis enriched in hospitalized patients (CC2, CC9, CC28 and CC40).  相似文献   
100.

Introduction

Chronic inflammation is a profound systemic modification of the cellular microenvironment which could affect survival, repair and maintenance of muscle stem cells. The aim of this study was to define the role of chronic inflammation on the regenerative potential of satellite cells in human muscle.

Methods

As a model for chronic inflammation, 11 patients suffering from rheumatoid arthritis (RA) were included together with 16 patients with osteoarthritis (OA) as controls. The mean age of both groups was 64 years, with more females in the RA group compared to the OA group. During elective knee replacement surgery, a muscle biopsy was taken from the distal musculus vastus medialis. Cell populations from four RA and eight OA patients were used for extensive phenotyping because these cell populations showed no spontaneous differentiation and myogenic purity greater than 75% after explantation.

Results

After mononuclear cell explantation, myogenic purity, viability, proliferation index, number of colonies, myogenic colonies, growth speed, maximum number of population doublings and fusion index were not different between RA and OA patients. Furthermore, the expression of proteins involved in replicative and stress-induced premature senescence and apoptosis, including p16, p21, p53, hTERT and cleaved caspase-3, was not different between RA and OA patients. Mean telomere length was shorter in the RA group compared to the OA group.

Conclusions

In the present study we found evidence that chronic inflammation in RA does not affect the in vitro regenerative potential of human satellite cells. Identification of mechanisms influencing muscle regeneration by modulation of its microenvironment may, therefore, be more appropriate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号