首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3618篇
  免费   430篇
  国内免费   1篇
  2021年   31篇
  2020年   28篇
  2019年   36篇
  2018年   38篇
  2017年   39篇
  2016年   77篇
  2015年   121篇
  2014年   98篇
  2013年   123篇
  2012年   195篇
  2011年   178篇
  2010年   114篇
  2009年   93篇
  2008年   168篇
  2007年   157篇
  2006年   134篇
  2005年   132篇
  2004年   160篇
  2003年   143篇
  2002年   126篇
  2001年   116篇
  2000年   106篇
  1999年   102篇
  1998年   54篇
  1997年   40篇
  1996年   37篇
  1995年   33篇
  1994年   30篇
  1993年   39篇
  1992年   61篇
  1991年   69篇
  1990年   66篇
  1989年   55篇
  1988年   50篇
  1987年   62篇
  1986年   74篇
  1985年   53篇
  1984年   36篇
  1983年   35篇
  1982年   39篇
  1981年   35篇
  1980年   37篇
  1979年   45篇
  1978年   35篇
  1977年   29篇
  1976年   39篇
  1974年   30篇
  1973年   34篇
  1971年   30篇
  1966年   31篇
排序方式: 共有4049条查询结果,搜索用时 31 毫秒
891.
Recombination between single-site and multisite chloramphenicol-sensitive mutants of the F-like R factors R1 and R100-1 indicates that the chloramphenicol resistance region is a single structural gene coding for the 20,000-molecular weight subunit of chloramphenicol acetyltransferase.  相似文献   
892.
893.
894.
895.
Intracellular rotation and the phototropic response of Phycomyces.   总被引:4,自引:0,他引:4       下载免费PDF全文
Experimental evidence indicates that during phototropism, Phycomyces sporangiophores use their own net rotation to convert an apparently spatial stimulus to a temporal one. Conversion to a continuous temporal stimulus insures that phototropism never adapts as long as the spatial asymmetry in illumination is maintained. If this temporal stimulus is circumvented by rotating the cell backwards so that there is no net rotation of some of the receptors relative to the light, the response can be reduced by two-thirds. The system thus adapts to the incident light, resulting in a reduced response. For the illumination of a transparent cell, this compensating rotation speed is 10 degrees/min counterclockwise and probably corresponds to the photoreceptor rotation in the most effective part of the growing zone. We infer that this region is in the upper portion of the growing zone and that the receptor system rotates integrally with that region of the cell.  相似文献   
896.
897.
898.
899.

In altered communities, novel species’ interactions may critically impact ecosystem functioning. One key ecosystem process, seed dispersal, often requires mutualistic interactions between frugivores and fruiting plants, and functional traits, such as seed width, may affect interaction outcomes. Forests of the Hawaiian Islands have experienced high species turnover, and introduced galliforms, the largest of the extant avian frugivores, consume fruit from both native and non-native plants. We investigated the roles of two galliform species as seed dispersers and seed predators in Hawaiian forests. Using captive Kalij Pheasants (Lophura leucomelanos) and Erckel’s Francolins (Pternistis erckelii), we measured the probability of seed survival during gut passage and seed germination following gut passage. We also examined which seeds are being dispersed in forests on the islands of O’ahu and Hawai’i. We found that galliforms are major seed predators for both native and non-native plants, with less than 5% of seeds surviving gut passage for all plants tested and in both bird species. Gut passage by Kalij Pheasants significantly reduced the probability of seeds germinating, especially for the native plants. Further, larger-seeded plants were both less likely to survive gut passage and to germinate. In the wild, galliforms dispersed native and non-native seeds at similar rates. Overall, our results suggest the introduced galliforms are a double-edged sword in conservation efforts; they may help reduce the spread of non-native plants, but they also destroy the seeds of some native plants. Broadly, we show mutualism breakdown may occur following high species turnover, and that functional traits can be useful for predicting outcomes from novel species’ interactions.

  相似文献   
900.
The secondary loss of flight in previously winged insect lineages has long fascinated biologists. Habitat stability and isolation are thought to play important roles in driving wing reduction (Roff 1990, 1994), with exposure to high winds suggested to accelerate this process (Darwin 1859), although the role exposure plays in insect wing loss has never been empirically demonstrated. Here we assess fine‐scale distributional records from a diverse regional stonefly assemblage, to demonstrate a widespread association between wing loss and the treeline in New Zealand. The observed pattern suggests that exposure plays a crucial role driving wing loss in alpine insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号