首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   87篇
  国内免费   1篇
  998篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   8篇
  2019年   3篇
  2018年   16篇
  2017年   9篇
  2016年   18篇
  2015年   34篇
  2014年   35篇
  2013年   49篇
  2012年   77篇
  2011年   59篇
  2010年   39篇
  2009年   42篇
  2008年   48篇
  2007年   58篇
  2006年   48篇
  2005年   59篇
  2004年   59篇
  2003年   49篇
  2002年   53篇
  2001年   9篇
  2000年   10篇
  1999年   10篇
  1998年   15篇
  1997年   13篇
  1996年   17篇
  1995年   7篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   10篇
  1987年   8篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1978年   7篇
  1976年   4篇
  1971年   3篇
  1937年   2篇
  1930年   2篇
  1910年   2篇
排序方式: 共有998条查询结果,搜索用时 15 毫秒
101.
UDP-N-acetylglucosamine-3-O-acyltransferase (UDP-GlcNAc acyltransferase) catalyzes the first step of lipid A biosynthesis (M. S. Anderson and C. R. H. Raetz, J. Biol. Chem. 262:5159–5169, 1987). We here report the isolation of the lpxA gene of Pseudomonas aeruginosa from a library of Pseudomonas strain PAO1 expressed in Escherichia coli LE392 (J. Lightfoot and J. S. Lam, J. Bacteriol. 173:5624–5630, 1991). Pseudomonas lpxA encodes a 10-carbon-specific UDP-GlcNAc acyltransferase, whereas the E. coli transferase is selective for a 14-carbon acyl chain. Recombinant cosmid 1137 enabled production of a 3-hydroxydecanoyl-specific UDP-GlcNAc acyltransferase in E. coli. It was identified by assaying lysozyme-EDTA lysates of individual members of the library with 3-hydroxydecanoyl-acyl carrier protein (ACP) as the substrate. Cosmid 1137 contained a 20-kb insert of P. aeruginosa DNA. The lpxA gene region was localized to a 1.3-kb SalI-PstI fragment. Sequencing revealed that it contains one complete open reading frame (777 bp) encoding a new lpxA homolog. The predicted Pseudomonas LpxA is 258 amino acids long and contains 21 complete hexapeptide repeating units, spaced in approximately the same manner as the 24 repeats of E. coli LpxA. The P. aeruginosa UDP-GlcNAc acyltransferase is 54% identical and 67% similar to the E. coli enzyme. A plasmid (pGD3) containing the 1.3-kb SalI-PstI fragment complemented E. coli RO138, a temperature-sensitive mutant harboring lpxA2. LpxA assays of extracts of this construct indicated that it is >1,000-fold more selective for 3-hydroxydecanoyl-ACP than for 3-hydroxymyristoyl-ACP. Mass spectrometry of lipid A isolated from this strain by hydrolysis at pH 4.5 revealed [M-H] 1,684.5 (versus 1,796.5 for wild-type lipid A), consistent with 3-hydroxydecanoate rather than 3-hydroxymyristate at positions 3 and 3′.  相似文献   
102.
The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine by a 3- and 4-carbon linker, respectively. Previous in vitro assays showed both compounds to be 10-100 times more efficient as hypoxic cell radiosensitizers (based on external drug concentrations) than the untargeted 2-nitroimidazole radiosensitizer, misonidazole (Cowan et al., Radiat. Res. 127, 81-89, 1991). Here we have used a (32)P postlabeling assay and 5'-end-labeled oligonucleotide assay to compare the radiation-induced DNA damage generated in the presence of 2-NLP-3, 2-NLP-4, phenanthridine and misonidazole. After irradiation of the DNA under anoxic conditions, we observed a significantly greater level of 3'-phosphoglycolate DNA damage in the presence of 2-NLP-3 or 2-NLP-4 compared to irradiation of the DNA in the presence of misonidazole. This may account at least in part for the greater cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole. Of the two nitroimidazole-linked phenanthridines, the better in vitro radiosensitizer, 2-NLP-4, generated more 3'-phosphoglycolate in DNA than did 2-NLP-3. At all concentrations, phenanthridine had little effect on the levels of DNA damage, suggesting that the enhanced radiosensitization displayed by 2-NLP-3 and 2-NLP-4 is due to the localization of the 2-nitroimidazole to the DNA by the phenanthridine substituent and not to radiosensitization by the phenanthridine moiety itself.  相似文献   
103.
The ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as both a repressor and an activator of numerous genes involved in maintaining iron homeostasis in bacteria. It has also been demonstrated in Vibrio cholerae that Fur plays an additional role in pathogenesis, opening up the potential of Fur as a drug target for cholera. Here we present the crystal structure of V. cholerae Fur that reveals a very different orientation of the DNA-binding domains compared with that observed in Pseudomonas aeruginosa Fur . Each monomer of the dimeric Fur protein contains two metal binding sites occupied by zinc in the crystal structure. In the P. aeruginosa study these were designated as the regulatory site (Zn1) and structural site (Zn2). This V. cholerae Fur study, together with studies on Fur homologues and paralogues, suggests that in fact the Zn2 site is the regulatory iron binding site and the Zn1 site plays an auxiliary role. There is no evidence of metal binding to the cysteines that are conserved in many Fur homologues, including Escherichia coli Fur. An analysis of the metal binding properties shows that V. cholerae Fur can be activated by a range of divalent metals.  相似文献   
104.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.  相似文献   
105.
The effects of immobilization stress and/or dexamethasone (DEX) on the adrenal ornithine decarboxylase (ODC) activities of sham-operated and adrenal-medulloectomized (enucleated) male Sprague-Dawley rats were investigated. On day 11 after surgery, rats were injected with saline or DEX (1 mg/kg), 3 h before the time of sacrifice (0600 h or 1800 h). Four groups, from sham-operated and enucleated rats (ENU) treated with saline or DEX were subjected to immobilization stress for 1 h prior to sacrifice. Groups of rats from stress-sham-DEX, non stress-sham-DEX, stress-sham, non stress-sham, stress-ENU-DEX, non stress-ENU-DEX, stress-ENU, and non stress-ENU were sacrificed at 0600 h or 1800 h on day 11 after surgery. Adrenal glands were excised and later analyzed for ODC activities. Results indicated that DEX and/or immobilization stress inhibited ODC activities (p < 0.05) in normal and regenerating adrenal glands at 1800 h and ODC activity varies diurnally, the activity being greater at 1800 h than at 0600 hours (p < 0.001).  相似文献   
106.
107.
Wetlands Ecology and Management - We compared a rapid bioassessment protocol (Traveling Sweep Approach [TSA]) with a more conventional time intensive protocol (Composite Transect Approach [CTA]) to...  相似文献   
108.
There are many peptides known that inhibit the entry of enveloped viruses into cells, including one peptide that is successfully being used in the clinic as a drug. In this review, we discuss the discovery, antiviral activity and mechanism of action of such peptides. While peptide entry inhibitors have been discovered by a wide variety of approaches (structure-based, accidental, intentional, rational and brute force) we show here that they share a common physical chemical property: they are at least somewhat hydrophobic and/or amphipathic and have a propensity to interact with membrane interfaces. We propose that this propensity drives a shared mechanism of action for many peptide entry inhibitors, involving direct interactions with viral and cellular membranes, as well as interactions with the complex hydrophobic protein/lipid interfaces that are exposed, at least transiently, during virus–cell fusion. By interacting simultaneously with the membrane interfaces and other critical hydrophobic surfaces, we hypothesize that peptide entry inhibitors can act by changing the physical chemistry of the membranes, and the fusion protein interfaces bridging them, and by doing so interfere with the fusion of cellular and viral membranes. Based on this idea, we propose that an approach that focuses on the interfacial hydrophobicity of putative entry inhibitors could lead to the efficient discovery of novel, broad-spectrum viral entry inhibitors. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   
109.
Chlamydia pecorum is an obligate intracellular bacterial pathogen that causes diverse disease in a wide variety of economically important mammals. We report the finished complete genome sequence of C. pecorum E58, the type strain for the species.  相似文献   
110.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings. Received: 12 July 1998 / Accepted: 13 August 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号