首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1307篇
  免费   179篇
  国内免费   2篇
  2022年   15篇
  2021年   29篇
  2020年   16篇
  2019年   19篇
  2018年   22篇
  2017年   19篇
  2016年   31篇
  2015年   46篇
  2014年   59篇
  2013年   45篇
  2012年   65篇
  2011年   66篇
  2010年   43篇
  2009年   34篇
  2008年   59篇
  2007年   47篇
  2006年   51篇
  2005年   44篇
  2004年   44篇
  2003年   39篇
  2002年   51篇
  2001年   17篇
  2000年   31篇
  1999年   28篇
  1998年   30篇
  1997年   18篇
  1996年   18篇
  1994年   18篇
  1993年   20篇
  1992年   23篇
  1991年   23篇
  1990年   14篇
  1989年   25篇
  1988年   23篇
  1987年   16篇
  1986年   13篇
  1985年   20篇
  1983年   10篇
  1982年   11篇
  1981年   16篇
  1980年   18篇
  1979年   20篇
  1978年   13篇
  1977年   22篇
  1976年   17篇
  1975年   17篇
  1974年   10篇
  1973年   14篇
  1972年   18篇
  1971年   15篇
排序方式: 共有1488条查询结果,搜索用时 15 毫秒
91.
The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity.  相似文献   
92.
93.
94.
We recently reported the pharmacological screening of a natural products-inspired library of spiroepoxide probes, resulting in the discovery of an agent MJE3 that displayed anti-proliferative effects in human breast cancer cells. MJE3 was found to covalently inactivate phosphoglycerate mutase-1 (PGAM1), a glycolytic enzyme with postulated roles in cancer cell metabolism and proliferation. Considering that MJE3 is one of the first examples of a cell-permeable, small-molecule inhibitor for PGAM1, we pursued a detailed examination of its mechanism and structural requirements for covalent inactivation. MJE3 was found to label PGAM1 on lysine-100, a conserved active site residue implicated in substrate recognition. Structural features of MJE3 important for PGAM1 labeling included two key recognition elements (an indole ring and carboxylic acid), the stereochemical orientation of the spiroepoxide, and presentation of these various binding/reactive groups on a rigid cyclohexane scaffold. Modeling studies of the docked MJE3-PGAM1 complex provide a structural rationale for these stringent requirements. Overall, these studies indicate that a special combination of binding and reactive elements are united in the MJE3 structure to inactivate PGAM1. More generally, our findings provide further evidence that useful pharmacological tools can emerge from screening structurally diverse libraries of protein-reactive probes.  相似文献   
95.
Modern agricultural practices increase the potential for plant pathogen spread, while the advent of affordable whole genome sequencing enables in-depth studies of pathogen movement. Population genomic studies may decipher pathogen movement and population structure as a result of complex agricultural production systems. We used whole genome sequences of 281 Xanthomonas perforans strains collected within one tomato production season across Florida and southern Georgia fields to test for population genetic structure associated with tomato production system variables. We identified six clusters of X. perforans from core gene SNPs that corresponded with phylogenetic lineages. Using whole genome SNPs, we found genetic structure among farms, transplant facilities, cultivars, seed producers, grower operations, regions, and counties. Overall, grower operations that produced their own transplants were associated with genetically distinct and less diverse populations of strains compared to grower operations that received transplants from multiple sources. The degree of genetic differentiation among components of Florida’s tomato production system varied between clusters, suggesting differential dispersal of the strains, such as through seed or contaminated transplants versus local movement within farms. Overall, we showed that the genetic variation of a bacterial plant pathogen is shaped by the structure of the plant production system.Subject terms: Applied microbiology, Population genetics, Microbial ecology, Microbial ecology  相似文献   
96.
A cDNA clone of an alpha subunit of the human GABA-A receptor has been isolated. The human clone (pCLL800) contains 1055 nucleotides in an open reading frame and 260 nucleotides in the 5' non-coding region. The 351 amino acid sequence of this human alpha subunit shows 97% homology with its bovine counterpart. Hybridization of pCLL800 to Northern blots shows a 3.9/4.3 Kb RNA doublet in human cortex, rat whole brain, cortex, hippocampus, midbrain, olfactory bulb and cerebellum. Developmental studies show that the levels of the rat alpha mRNA increase between one and three weeks of age in a manner similar to the development of the benzodiazepine binding sites.  相似文献   
97.
The advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia-, methane-, and other short-chain alkane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. The in situ detection and phylogenetic identification of novel ammonia- and alkane-oxidizing bacteria remain challenging due to their naturally low abundances and difficulties in obtaining new isolates from complex samples. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and alkane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labeling of cells harboring active ammonia and alkane monooxygenases. Biotinylation of these enzymes in combination with immunogold labeling revealed the subcellular localization of the tagged proteins, which corroborated expected enzyme targets in model strains. In addition, fluorescent labeling of cells harboring active ammonia or alkane monooxygenases provided a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labeling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and alkane-oxidizing bacteria from complex environmental samples, enabling the recovery of high-quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and alkane-oxidizing bacteria present in complex microbial communities.Subject terms: Environmental microbiology, Sequencing, Microbiology  相似文献   
98.
Progression through the G1 phase of the cell cycle requires phosphorylation of the retinoblastoma gene product (pRb) by the cyclin D-dependent kinases CDK4 and CDK6, whose activity can specifically be blocked by the CDK inhibitor p16(INK4A). Misregulation of the pRb/cyclin D/p16(INK4A) pathway is one of the most common events in human cancer and has lead to the suggestion that inhibition of cyclin D-dependent kinase activity may have therapeutic value as an anticancer treatment. Through screening of a chemical library, we initially identified the [2,3-d]pyridopyrimidines as inhibitors of CDK4. Chemical modification resulted in the identification of PD 0183812 as a potent and highly selective inhibitor of both CDK4 and CDK6 kinase activity, which is competitive with ATP. Flow cytometry experiments showed that of the cell lines tested, only those expressing pRb demonstrated a G1 arrest when treated with PD 0183812. This arrest correlated in terms of incubation time and potency with a loss of pRb phosphorylation and a block in proliferation, which was reversible. These results suggest a potential use of this chemical class of compounds as therapeutic agents in the treatment of tumors with functional pRb, possessing cell cycle aberrations in other members of the pRb/cyclin D/p16(INK4A) pathway.  相似文献   
99.
A nonisotopic estrogen receptor-based assay to detect estrogenic compounds   总被引:1,自引:0,他引:1  
We have used the ligand binding domain of the recombinant human estrogen receptor (hER) to develop a nonisotopic assay for detection of estrogenic compounds. The assay is based on competition of the estrogenic ligand with 17beta-estradiol for binding to the receptor, which leaves 17beta-estradiol free to bind to an anti-17beta-estradiol antibody. Unbound anti-17beta-estradiol antibody then binds to immobilized 17beta-estradiol-protein conjugate (to which hER is unable to bind for steric reasons), and is detected by an enzyme-labeled anti-rabbit IgG antibody. We used the assay to detect estrogenic compounds (mainly members of the flavonoid group of plant polyphenols) in a variety of commonly consumed plant foods.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号