首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2183篇
  免费   230篇
  2023年   29篇
  2022年   43篇
  2021年   101篇
  2020年   52篇
  2019年   62篇
  2018年   106篇
  2017年   65篇
  2016年   104篇
  2015年   173篇
  2014年   170篇
  2013年   164篇
  2012年   194篇
  2011年   192篇
  2010年   109篇
  2009年   95篇
  2008年   106篇
  2007年   101篇
  2006年   74篇
  2005年   57篇
  2004年   76篇
  2003年   72篇
  2002年   50篇
  2001年   18篇
  2000年   13篇
  1999年   12篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   9篇
  1979年   6篇
  1975年   3篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1968年   5篇
  1959年   2篇
  1916年   2篇
排序方式: 共有2413条查询结果,搜索用时 15 毫秒
951.
The thermostable 36‐residue subdomain of the villin headpiece (HP36) is the smallest known cooperatively folding protein. Although the folding and internal dynamics of HP36 and close variants have been extensively studied, there has not been a comprehensive investigation of side‐chain motion in this protein. Here, the fast motion of methyl‐bearing amino acid side chains is explored over a range of temperatures using site‐resolved solution nuclear magnetic resonance deuterium relaxation. The squared generalized order parameters of methyl groups extensively spatially segregate according to motional classes. This has not been observed before in any protein studied using this methodology. The class segregation is preserved from 275 to 305 K. Motions detected in Helix 3 suggest a fast timescale of conformational heterogeneity that has not been previously observed but is consistent with a range of folding and dynamics studies. Finally, a comparison between the order parameters in solution with previous results based on solid‐state nuclear magnetic resonance deuterium line shape analysis of HP36 in partially hydrated powders shows a clear disagreement for half of the sites. This result has significant implications for the interpretation of data derived from a variety of approaches that rely on partially hydrated protein samples.  相似文献   
952.
Predation can influence the magnitude of herbivory that grazers exert on primary producers by altering both grazer abundance and their per capita consumption rates via changes in behavior, density‐dependent effects, and size. Therefore, models based solely on changes in abundance may miss key components of grazing pressure. We estimated shifts in grazing pressure associated with changes in the abundance and per capita consumption rates of sea urchins triggered by size‐selective predation by sea otters (Enhydra lutris). Field surveys suggest that sea otters dramatically decreased the abundance and median size of sea urchins. Furthermore, laboratory experiments revealed that kelp consumption by sea urchins varied nonlinearly as a function of urchin size such that consumption rates increased to the 0.56 and 0.68 power of biomass for red and green urchins, respectively. This reveals that shifts in urchin size structure due to size‐selective predation by sea otters alter sea urchin per capita grazing rates. Comparison of two quantitative models estimating total consumptive capacity revealed that a model incorporating shifts in urchin abundance while neglecting urchin size structure overestimated grazing pressure compared to a model that incorporated size. Consequently, incorporating shifts in urchin size better predicted field estimates of kelp abundance compared to equivalent models based on urchin abundance alone. We provide strong evidence that incorporating size‐specific parameters increases our ability to describe and predict trophic interactions.  相似文献   
953.
The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with Ppinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant–insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade‐offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant–insect coevolution.  相似文献   
954.
Bioacoustic localization of bird vocalizations provides unattended observations of the location of calling individuals in many field applications. While this technique has been successful in monitoring terrestrial distributions of calling birds, no published study has applied these methods to migrating birds in flight. The value of nocturnal flight call recordings can increase with the addition of three‐dimensional position retrievals, which can be achieved with adjustments to existing localization techniques. Using the time difference of arrival method, we have developed a proof‐of‐concept acoustic microphone array that allows the three‐dimensional positioning of calls within the airspace. Our array consists of six microphones, mounted in pairs at the top and bottom of three 10‐m poles, arranged in an equilateral triangle with sides of 20 m. The microphone array was designed using readily available components and costs less than $2,000 USD to build and deploy. We validate this technique using a kite‐lofted GPS and speaker package, and obtain 60.1% of vertical retrievals within the accuracy of the GPS measurements (±5 m) and 80.4% of vertical retrievals within ±10 m. The mean Euclidian distance between the acoustic retrievals of flight calls and the GPS truth was 9.6 m. Identification and localization of nocturnal flight calls have the potential to provide species‐specific spatial characterizations of bird migration within the airspace. Even with the inexpensive equipment used in this trial, low‐altitude applications such as surveillance around wind farms or oil platforms can benefit from the three‐dimensional retrievals provided by this technique.  相似文献   
955.
956.
Understanding the relative roles of intrinsic and extrinsic reproductive barriers, and their interplay within the geographic context of diverging taxa, remains an outstanding challenge in the study of speciation. We conducted a comparative analysis of reproductive isolation in California Jewelflowers (Streptanthus, s.l., Brassicaceae) by quantifying potential barriers to gene flow at multiple life history stages in 39 species pairs spanning five million years of evolutionary divergence. We quantified nine potential pre‐ and postzygotic barriers and explored patterns of reproductive isolation in relation to genetic distance. Intrinsic postzygotic isolation was initially weak, increased at intermediate genetic distances, and reached a threshold characterized by complete genetic incompatibility. Climatic niche differences were strong at shallow genetic distances, and species pairs with overlapping ranges showed slight but appreciable phenological isolation, highlighting the potential for ecological barriers to contribute to speciation. Geographic analyses suggest that speciation is not regionally allopatric in the California Jewelflowers, as recently diverged taxa occur in relatively close proximity and display substantial range overlap. Young pairs are characterized by incomplete intrinsic postzygotic isolation, suggesting that extrinsic barriers or fine‐scale spatial segregation are more important early in the divergence process than genetic incompatibilities.  相似文献   
957.
Liquid–liquid phase separation (LLPS) of proteins is important to a variety of biological processes both functional and deleterious, including the formation of membraneless organelles, molecular condensations that sequester or release molecules in response to stimuli, and the early stages of disease-related protein aggregation. In the protein-rich, crowded environment of the eye lens, LLPS manifests as cold cataract. We characterize the LLPS behavior of six structural γ-crystallins from the eye lens of the Antarctic toothfish Dissostichus mawsoni, whose intact lenses resist cold cataract in subzero waters. Phase separation of these proteins is not strongly correlated with thermal stability, aggregation propensity, or cross-species chaperone protection from heat denaturation. Instead, LLPS is driven by protein–protein interactions involving charged residues. The critical temperature of the phase transition can be tuned over a wide temperature range by selective substitution of surface residues, suggesting general principles for controlling this phenomenon, even in compactly folded proteins.  相似文献   
958.
Elamipretide is a tetrapeptide that restores defects in mitochondrial function, binds to cardiolipin, and is being tested in clinical trials for mitochondria-related diseases. However, whether elamipretide modulates mitochondrial quality control and dynamics, processes essential to preserve mitochondrial function, is unclear. Thus, we tested the effects of elamipretide on mitochondrial morphology, mitophagosome formation, and their early disruption induced by excess nutrients in INS1 β-cells. Elamipretide treatment was sufficient to increase engulfment of mitochondria into autophagosomes in control INS1 β-cells, without inducing widespread changes in mitochondrial morphology or membrane potential. In an early pathogenic context mimicked by short-term exposure to nutrient excess, elamipretide treatment prevented both mitochondrial fragmentation and defects in the engulfment of mitochondria into autophagosomes. On the other hand, elamipretide did not prevent lysosomal defects induced by nutrient excess. Accordingly, elamipretide treatment did not entail benefits on pathogenic p62 and LC3II accumulation or on insulin secretory function. In conclusion, our data show that elamipretide selectively stimulates the engulfment of mitochondria into autophagosomes and prevents its defects induced by nutrient excess. Thus, we propose that improved selectivity of mitochondrial quality control processes might contribute to the benefits stemming from elamipretide treatments in other disease models.  相似文献   
959.

Key message

Host resistances in PI 197088 cucumber to downy and powdery mildew pathogens are conferred by 11 (3 with major effect) and 4 (1 major effect) QTL, respectively, and three of which are co-localized.

Abstract

The downy mildew (DM) and powdery mildew (PM) are the two most important foliar diseases of cucurbit crops worldwide. The cucumber accession PI 197088 exhibits high-level resistances to both pathogens. Here, we reported QTL mapping results for DM and PM resistances with 148 recombinant inbred lines from a cross between PI 197088 and the susceptible line ‘Coolgreen’. Phenotypic data on responses to natural DM and PM infection were collected in multi-year and multi-location replicated field trials. A high-density genetic map with 2780 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing and 55 microsatellite markers was developed, which revealed genomic regions with segregation distortion and mis-assemblies in the ‘9930’ cucumber draft genome. QTL analysis identified 11 and 4 QTL for DM and PM resistances accounting for more than 73.5 and 63.0% total phenotypic variance, respectively. Among the 11 DM resistance QTL, dm5.1, dm5.2, and dm5.3 were major-effect contributing QTL, whereas dm1.1, dm2.1, and dm6.2 conferred susceptibility. Of the 4 QTL for PM resistance, pm5.1 was the major-effect QTL explaining 32.4% phenotypic variance and the minor-effect QTL pm6.1 contributed to disease susceptibility. Three PM QTL, pm2.1, pm5.1, and pm6.1, were co-localized with DM QTL dm2.1, dm5.2, and dm6.1, respectively, which was consistent with the observed linkage of PM and DM resistances in PI 197088. The genetic architecture of DM resistance in PI 197088 and another resistant line WI7120 (PI 330628) was compared, and the potential of using PI 197088 in cucumber breeding for downy and powdery mildew resistances is discussed.
  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号