全文获取类型
收费全文 | 2476篇 |
免费 | 305篇 |
国内免费 | 1篇 |
专业分类
2782篇 |
出版年
2021年 | 30篇 |
2020年 | 22篇 |
2019年 | 23篇 |
2018年 | 35篇 |
2017年 | 21篇 |
2016年 | 46篇 |
2015年 | 69篇 |
2014年 | 74篇 |
2013年 | 96篇 |
2012年 | 108篇 |
2011年 | 105篇 |
2010年 | 77篇 |
2009年 | 59篇 |
2008年 | 100篇 |
2007年 | 108篇 |
2006年 | 83篇 |
2005年 | 68篇 |
2004年 | 76篇 |
2003年 | 71篇 |
2002年 | 78篇 |
2001年 | 74篇 |
2000年 | 81篇 |
1999年 | 67篇 |
1998年 | 44篇 |
1997年 | 33篇 |
1996年 | 25篇 |
1995年 | 23篇 |
1994年 | 22篇 |
1993年 | 28篇 |
1992年 | 47篇 |
1991年 | 46篇 |
1990年 | 44篇 |
1989年 | 51篇 |
1988年 | 42篇 |
1987年 | 32篇 |
1986年 | 43篇 |
1985年 | 35篇 |
1984年 | 23篇 |
1983年 | 28篇 |
1982年 | 29篇 |
1981年 | 21篇 |
1980年 | 28篇 |
1979年 | 33篇 |
1978年 | 29篇 |
1976年 | 25篇 |
1975年 | 29篇 |
1974年 | 37篇 |
1973年 | 31篇 |
1971年 | 27篇 |
1968年 | 26篇 |
排序方式: 共有2782条查询结果,搜索用时 15 毫秒
81.
Soybean Lipoxygenase-1 Oxidizes 3Z-Nonenal
: A Route to
4S-Hydroperoxy-2E-Nonenal and Related
Products 下载免费PDF全文
In previous work with soybean (Glycine max), it was reported that the initial product of 3Z-nonenal (NON) oxidation is 4-hydroperoxy-2E-nonenal (4-HPNE). 4-HPNE can be converted to 4-hydroxy-2E-nonenal by a hydroperoxide-dependent peroxygenase. In the present work we have attempted to purify the 4-HPNE-producing oxygenase from soybean seed. Chromatography on various supports had shown that O2 uptake with NON substrate consistently coincided with lipoxygenase (LOX)-1 activity. Compared with oxidation of LOX's preferred substrate, linoleic acid, the activity with NON was about 400- to 1000-fold less. Rather than obtaining the expected 4-HPNE, 4-oxo-2E-nonenal was the principal product of NON oxidation, presumably arising from the enzyme-generated alkoxyl radical of 4-HPNE. In further work a precipitous drop in activity was noted upon dilution of LOX-1 concentration; however, activity could be enhanced by spiking the reaction with 13S-hydroperoxy-9Z,11E-octadecadienoic acid. Under these conditions the principal product of NON oxidation shifted to the expected 4-HPNE. 4-HPNE was demonstrated to be 83% of the 4S-hydroperoxy-stereoisomer. Therefore, LOX-1 is also a 3Z-alkenal oxygenase, and it exerts the same stereospecificity of oxidation as it does with polyunsaturated fatty acids. Two other LOX isozymes of soybean seed were also found to oxidize NON to 4-HPNE with an excess of 4S-hydroperoxy-stereoisomer. 相似文献
82.
The study of pre-translational effects (ionization, tautomerization) and post-translational effects (methylation) of adenine and thymine has only recently been the focus of some studies. These effects can potentially help regulate gene expression as well as potentially disrupt normal gene function. Because of this wide array of roles, greater insight into these effects in deoxyribonucleic acids (DNA) are paramount. There has been considerable research of each phenomenon (tautomerization, methylation and ionization) individually. In this work, we attempt to shed light upon the pre-translational effects and post translational effects of adenine and thymine by investigating the electron affinities (EAs) and ionization potentials (IPs) of the major and minor tautomers and their methyl derivatives. We performed all calculations using the density functional theory (DFT) B3LYP functional accompanied with 6-311G(d,p), 6-311+G(d,p) and 6-311++G(df,pd) basis sets. Our results reveal that the thymine tautomer has a higher EA and IP than the adenine tautomers. The higher EA suggests that an electron that attaches to the AT base pair would predominately attach to the thymine instead of adenine. The higher IP would suggest that an electron that is removed from the AT base pair would be predominately removed from the adenine within the base pair. Understanding how tautomerization, ionization and methylation differences change effects, discourages, or promotes one another is lacking. In this work, we begin the steps of integrating these effects with one another, to gain a greater understanding of molecular changes in DNA bases. 相似文献
83.
Amanda I. Bradley Nicole M. Marsh Heather R. Borror Kaitlyn E. Mostoller Amber I. Gama Richard G. Gardner 《Molecular biology of the cell》2021,32(11):1121
Stress is ubiquitous to life and can irreparably damage essential biomolecules and organelles in cells. To survive, organisms must sense and adapt to stressful conditions. One highly conserved adaptive stress response is through the posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO). Here, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae. We found that cells exhibit a transient sumoylation response after acute exposure to ≤7.5% vol/vol ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol exposure. Mass spectrometry analyses identified 18 proteins that are sumoylated after acute ethanol exposure, with 15 known to associate with chromatin. Upon further analysis, we found that the chromatin structural proteins Smc5 and Smc6 undergo ethanol-induced sumoylation that depends on the activity of the E3 SUMO ligase Mms21. Using cell-cycle arrest assays, we observed that Smc5 and Smc6 ethanol-induced sumoylation occurs during G1 and G2/M phases but not S phase. Acute ethanol exposure also resulted in the formation of Rad52 foci at levels comparable to Rad52 foci formation after exposure to the DNA alkylating agent methyl methanesulfonate (MMS). MMS exposure is known to induce the intra-S-phase DNA damage checkpoint via Rad53 phosphorylation, but ethanol exposure did not induce Rad53 phosphorylation. Ethanol abrogated the effect of MMS on Rad53 phosphorylation when added simultaneously. From these studies, we propose that acute ethanol exposure induces a change in chromatin leading to sumoylation of specific chromatin structural proteins. 相似文献
84.
Nicholas A. Young Michael S. Bruss Mark Gardner William L. Willis Xiaokui Mo Giancarlo R. Valiente Yu Cao Zhongfa Liu Wael N. Jarjour Lai-Chu Wu 《PloS one》2014,9(11)
Despite the widespread use of curcumin for centuries in Eastern medicine as an anti-inflammatory agent, its molecular actions and therapeutic viability have only recently been explored. While curcumin does have potential therapeutic efficacy, both solubility and bioavailability must be improved before it can be more successfully translated to clinical care. We have previously reported a novel formulation of nano-emulsion curcumin (NEC) that achieves significantly greater plasma concentrations in mice after oral administration. Here, we confirm the immunosuppressive effects of NEC in vivo and further examine its molecular mechanisms to better understand therapeutic potential. Using transgenic mice harboring an NFκB-luciferase reporter gene, we demonstrate a novel application of this in vivo inflammatory model to test the efficacy of NEC administration by bioluminescent imaging and show that LPS-induced NFκB activity was suppressed with NEC compared to an equivalent amount of curcumin in aqueous suspension. Administration of NEC by oral gavage resulted in a reduction of blood monocytes, decreased levels of both TLR4 and RAGE expression, and inhibited secretion of MCP-1. Mechanistically, curcumin blocked LPS-induced phosphorylation of the p65 subunit of NFκB and IκBα in murine macrophages. In a mouse model of peritonitis, NEC significantly reduced macrophage recruitment, but not T-cell or B-cell levels. In addition, curcumin treatment of monocyte derived cell lines and primary human macrophages in vitro significantly inhibited cell migration. These data demonstrate that curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and establish that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response. 相似文献
85.
The central Pacific Ocean with its many low lying islands and atolls is under threat from sea level rise and increased storm activity. Here, we illustrate how increasing frequency and severity of large scale storm events associated with global climate change may be particularly profound at the local scale for human populations that rely on lagoon systems for provision of a variety of goods and services. In August 2011 a storm originating in the Southern Ocean caused a large amplitude ocean swell to move northward through the Pacific Ocean. Its arrival at Palmyra Atoll coincided with transient elevated sea surface height and triggered turnover of the lagoon water column. This storm-induced change to the lagoon reflects long distance connectivity with propagated wave energy from the Southern Ocean and illustrates the increasing threats generated by climate change that are faced by human populations on most low-lying Pacific islands and atolls. 相似文献
86.
87.
88.
Ruo-Jin Yan Gui-Rong Zhang Xiang-Zhao Guo Wei Ji Kun-Ci Chen Gui-Wei Zou Kai-Jian Wei Jonathan P. A. Gardner 《Conservation Genetics》2018,19(2):467-480
Major threats to freshwater fish diversity now include loss of native genetic diversity as a consequence of translocations of fishes between sites and from hatcheries to sites, and small effective population sizes resulting from overfishing and/or habitat loss. Ten polymorphic microsatellite markers were employed to evaluate genetic diversity, population genetic structure and gene flow amongst nine populations of the ecologically and economically important fish, the northern snakehead (Channa argus), in three river systems in central China. Multiple analyses revealed evidence of high genetic diversity and pronounced subdivision based on both regional separation and on river systems. A lack of evidence of genetic bottleneck over recent generations was consistent with the long-term stability of population size and contemporary distribution. The effective population sizes for most C. argus populations were small, suggesting the need for future conservation efforts focusing on these populations. Different lines of evidence point to the local enhancement of stocks by both aquaculture-reared fish and the transfer of wild fish. This study illustrates how human activities may affect genetic diversity and population genetic structure of C. argus populations, and highlights the need for new management regimes to protect native freshwater fish genetic diversity. 相似文献
89.
John S. Choy Eileen O'Toole Breanna M. Schuster Matthew J. Crisp Tatiana S. Karpova James G. McNally Mark Winey Melissa K. Gardner Munira A. Basrai 《Molecular biology of the cell》2013,24(17):2753-2763
How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles. 相似文献
90.
Martin H. van der Meer John B. Horne Michael G. Gardner Jean‐Paul A. Hobbs Morgan Pratchett Lynne van Herwerden 《Ecology and evolution》2013,3(6):1653-1666
Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long‐term persistence of these species following local extinction. This study explored population connectivity in the ecologically‐specialized endemic three‐striped butterflyfish (Chaetodon tricinctus) using mt and msatDNA (nuclear microsatellites) to distinguish evolutionary versus contemporary gene flow, estimate self‐replenishment and measure genetic diversity among locations at the remote Australian offshore coral reefs of Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI), and Norfolk Island (NI). Mt and msatDNA suggested genetic differentiation of the most peripheral location (NI) from the remaining three locations (MR, ER, LHI). Despite high levels of mtDNA gene flow, there is limited msatDNA gene flow with evidence of high levels of self‐replenishment (≥76%) at all four locations. Taken together, this suggests prolonged population recovery times following population declines. The peripheral population (NI) is most vulnerable to local extinction due to its relative isolation, extreme levels of self‐replenishment (95%), and low contemporary abundance. 相似文献