首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4786篇
  免费   495篇
  5281篇
  2023年   25篇
  2022年   49篇
  2021年   132篇
  2020年   69篇
  2019年   91篇
  2018年   121篇
  2017年   109篇
  2016年   155篇
  2015年   222篇
  2014年   249篇
  2013年   272篇
  2012年   344篇
  2011年   293篇
  2010年   208篇
  2009年   163篇
  2008年   238篇
  2007年   220篇
  2006年   195篇
  2005年   172篇
  2004年   165篇
  2003年   168篇
  2002年   106篇
  2001年   129篇
  2000年   111篇
  1999年   85篇
  1998年   55篇
  1997年   45篇
  1996年   45篇
  1995年   44篇
  1994年   47篇
  1993年   41篇
  1992年   72篇
  1991年   64篇
  1990年   83篇
  1989年   70篇
  1988年   76篇
  1987年   62篇
  1986年   64篇
  1985年   56篇
  1984年   37篇
  1983年   38篇
  1982年   27篇
  1981年   21篇
  1980年   22篇
  1979年   23篇
  1978年   21篇
  1977年   22篇
  1976年   22篇
  1974年   19篇
  1973年   20篇
排序方式: 共有5281条查询结果,搜索用时 0 毫秒
111.
Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells were capable of adsorbing phage Dp-1; ethanolamine-grown pneumococci or cell wall preparations were unable to do so. Adsorption of Dp-1 to choline-containing cell walls was competitively inhibited by phosphorylcholine and by several choline-containing soluble cell surface components, such as the Forssman antigen and the teichoic acid-glycan complexes formed by autolytic cell wall degradation. Cell walls prepared from pneumococci grown in ethanolamine or phosphorylethanolamine were inactive. Electron microscopic studies with pneumococci that had segments of choline-containing cell wall material amid ethanolamine-containing regions indicated that the Dp-1 phage particles adsorbed exclusively to the choline-containing surface areas. We suggest that the choline residues of the pneumococcal teichoic acid are essential components of the Dp-1 phage receptors in this bacterium.  相似文献   
112.
PHLDA1 (pleckstrin homology-like domain, family A, member 1) is a multifunctional protein that plays distinct roles in several biological processes including cell death and therefore its altered expression has been identified in different types of cancer. Progressively loss of PHLDA1 was found in primary and metastatic melanoma while its overexpression was reported in intestinal and pancreatic tumors. Previous work from our group showed that negative expression of PHLDA1 protein was a strong predictor of poor prognosis for breast cancer disease. However, the function of PHLDA1 in mammary epithelial cells and the tumorigenic process of the breast is unclear. To dissect PHLDA1 role in human breast epithelial cells, we generated a clone of MCF10A cells with stable knockdown of PHLDA1 and performed functional studies. To achieve reduced PHLDA1 expression we used shRNA plasmid transfection and then changes in cell morphology and biological behavior were assessed. We found that PHLDA1 downregulation induced marked morphological alterations in MCF10A cells, such as changes in cell-to-cell adhesion pattern and cytoskeleton reorganization. Regarding cell behavior, MCF10A cells with reduced expression of PHLDA1 showed higher proliferative rate and migration ability in comparison with control cells. We also found that MCF10A cells with PHLDA1 knockdown acquired invasive properties, as evaluated by transwell Matrigel invasion assay and showed enhanced colony-forming ability and irregular growth in low attachment condition. Altogether, our results indicate that PHLDA1 downregulation in MCF10A cells leads to morphological changes and a more aggressive behavior.  相似文献   
113.
114.
Abstract

Arsenic, cadmium, lead, and mercury in fish is the result of long-term biomagnification in the food chain and is of public concern, due to the toxicity they engender. The objective of this research was to determine the concentrations of arsenic, cadmium, lead, and mercury in 13 species of marine fish broadly commercialized in Aracaju, SE, Brazil and to evaluate the risks of fish consumption associated with these trace elements, using the Target Hazard Quotient (THQ). As, Cd, and Pb levels were measured with inductively coupled plasma mass spectrometry (ICP-MS), and mercury was analyzed via cold vapor atomic absorption spectrometry. The results indicate a large variability in concentrations for arsenic (0.07–2.03?mg kg–1) and mercury (0.01–1.44?mg kg–1), associated with the animal dietary category. Cadmium (0.04–0.19?mg kg–1) and lead (<0.01–0.45?mg kg–1), on the other hand showed a mild variability. None of the evaluated specimens had As, Cd, and Pb THQ values higher than 1. The THQ values for mercury were higher but indicated no consumption risk, except for amberjack, and snook fish. Overall THQ indicates lower risk of consumption in fish that are at the base of the food chain, than in those that are top predators.  相似文献   
115.
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women''s health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women''s lives as they age.  相似文献   
116.
Long noncoding RNAs (lncRNAs) are vastly transcribed and extensively studied but lncRNAs overlapping with the sense orientation of mRNA have been poorly studied. We analyzed the lncRNA DAPALR overlapping with the 5´ UTR of the Doublesex1 (Dsx1), the male determining gene in Daphnia magna. By affinity purification, we identified an RNA binding protein, Shep as a DAPALR binding protein. Shep also binds to Dsx1 5´ UTR by recognizing the overlapping sequence and suppresses translation of the mRNA. In vitro and in vivo analyses indicated that DAPALR increased Dsx1 translation efficiency by sequestration of Shep. This regulation was impaired when the Shep binding site in DAPALR was deleted. These results suggest that Shep suppresses the unintentional translation of Dsx1 by setting a threshold; and when the sense lncRNA DAPALR is expressed, DAPALR cancels the suppression caused by Shep. This mechanism may be important to show dimorphic gene expressions such as sex determination and it may account for the binary expression in various developmental processes.  相似文献   
117.
Strategies to minimize dengue transmission commonly rely on vector control, which aims to maintain Ae. aegypti density below a theoretical threshold. Mosquito abundance is traditionally estimated from mark-release-recapture (MRR) experiments, which lack proper analysis regarding accurate vector spatial distribution and population density. Recently proposed strategies to control vector-borne diseases involve replacing the susceptible wild population by genetically modified individuals’ refractory to the infection by the pathogen. Accurate measurements of mosquito abundance in time and space are required to optimize the success of such interventions. In this paper, we present a hierarchical probabilistic model for the estimation of population abundance and spatial distribution from typical mosquito MRR experiments, with direct application to the planning of these new control strategies. We perform a Bayesian analysis using the model and data from two MRR experiments performed in a neighborhood of Rio de Janeiro, Brazil, during both low- and high-dengue transmission seasons. The hierarchical model indicates that mosquito spatial distribution is clustered during the winter (0.99 mosquitoes/premise 95% CI: 0.80–1.23) and more homogeneous during the high abundance period (5.2 mosquitoes/premise 95% CI: 4.3–5.9). The hierarchical model also performed better than the commonly used Fisher-Ford’s method, when using simulated data. The proposed model provides a formal treatment of the sources of uncertainty associated with the estimation of mosquito abundance imposed by the sampling design. Our approach is useful in strategies such as population suppression or the displacement of wild vector populations by refractory Wolbachia-infected mosquitoes, since the invasion dynamics have been shown to follow threshold conditions dictated by mosquito abundance. The presence of spatially distributed abundance hotspots is also formally addressed under this modeling framework and its knowledge deemed crucial to predict the fate of transmission control strategies based on the replacement of vector populations.  相似文献   
118.
Projections indicate an elevation of the atmospheric CO2 concentration ([CO2]) concomitant with an intensification of drought for this century, increasing the challenges to food security. On the one hand, drought is a main environmental factor responsible for decreasing crop productivity and grain quality, especially when occurring during the grain-filling stage. On the other hand, elevated [CO2] is predicted to mitigate some of the negative effects of drought. Sorghum (Sorghum bicolor) is a C4 grass that has important economical and nutritional values in many parts of the world. Although the impact of elevated [CO2] and drought in photosynthesis and growth has been well documented for sorghum, the effects of the combination of these two environmental factors on plant metabolism have yet to be determined. To address this question, sorghum plants (cv BRS 330) were grown and monitored at ambient (400 µmol mol−1) or elevated (800 µmol mol−1) [CO2] for 120 d and subjected to drought during the grain-filling stage. Leaf photosynthesis, respiration, and stomatal conductance were measured at 90 and 120 d after planting, and plant organs (leaves, culm, roots, prop roots, and grains) were harvested. Finally, biochemical composition and intracellular metabolites were assessed for each organ. As expected, elevated [CO2] reduced the stomatal conductance, which preserved soil moisture and plant fitness under drought. Interestingly, the whole-plant metabolism was adjusted and protein content in grains was improved by 60% in sorghum grown under elevated [CO2].Global food demand is projected to increase up to 110% by the middle of this century (Tilman et al., 2011; Alexandratos and Bruinsma, 2012), particularly due to a rise in world population that is likely to plateau at about 9 billion people (Godfray et al., 2010). Additionally, the average concentration of atmospheric CO2 ([CO2]) has increased 1.75 µmol mol−1 per year between 1975 and today, reaching 400 µmol mol−1 in April 2015 (NOAA, 2015). According to the A2 emission scenario from the U.S. Environmental Protection Agency, in the absence of explicit climate change policy, atmospheric CO2 concentrations will reach 800 µmol mol−1 by the end of this century. The increasing atmospheric [CO2] is resulting in global climate changes, such as reduction in water availability and elevation in temperature. These factors are expected to heavily influence food production in the next years (Godfray and Garnett, 2014; Magrin et al., 2014).Sorghum (Sorghum bicolor) is a C4 grass, considered a staple food grain for millions of the poorest and most food-insecure people in the semiarid tropics of Africa, Asia, and Central America, serving as an important source of energy, proteins, vitamins, and minerals (Taylor et al., 2006). Moreover, this crop is used for animal feed and as industrial raw material in developed countries such as the United States, which is the main world producer (FAO, 2015). With a fully sequenced genome (Paterson et al., 2009) and over 45,000 accessions representing a large geographic and genetic diversity, sorghum is a good model system in which to study the impact of global climate changes in C4 grasses.The increase in [CO2] in the atmosphere, which is the main driver of global climate changes (Meehl et al., 2007), is predicted to boost photosynthesis rates and productivity in a series of C3 legumes and cereals, mainly due to a decrease in the photorespiration process (Grashoff et al., 1995; Long et al., 2006). On the contrary, due to their capacity to concentrate CO2 in bundle sheath cells and reduce photorespiration to virtually zero, C4 plants are unlikely to respond to the elevation of atmospheric [CO2] (Leakey, 2009). However, even for C4 plants, elevated [CO2] can ameliorate the effects caused by drought, maintaining higher photosynthetic rates. This is due to an improvement in the efficiency of water use that is achieved by the reduction in stomatal conductance (Leakey et al., 2004; Markelz et al., 2011).The rate of photosynthesis as well as the redistribution of photoassimilates accumulated in different plant tissues during the day and/or during vegetative growth are crucial to grain development, and later, to its filling (Schnyder, 1993). Due to this relationship, any environmental stress such as drought occurring during the reproductive phase has the potential to result in poor grain filling and losses in yield (Blum et al., 1997). For instance, postanthesis drought can cause up to 30% decrease in yield (Borrell et al., 2000). It is also known that elevated [CO2], drought, high temperature, and any combinations of these stresses can lead to significant changes in grain composition (Taub et al., 2008; Da Matta et al., 2010; Uprety et al., 2010; Madan et al., 2012), suggesting diverse metabolic alterations and/or adaptations that occur in the plant when it is cultivated in such conditions.Although the impacts of elevated [CO2] and drought on photosynthesis and the growth of sorghum have been well documented (Conley et al., 2001; Ottman et al., 2001; Wall et al., 2001), no attention has been given to the impact of the combination of these two environmental changes on plant metabolism and composition. Regarding physiology, studies on the growth of sorghum under elevated [CO2] and drought showed an increase of the net assimilation rate of 23% due to a decrease of 32% in stomatal conductance (Wall et al., 2001). This resulted in sorghum’s ability to use water 17% more efficiently (Conley et al., 2001). An improvement in the final overall biomass under elevated [CO2] and drought has also been described (Ottman et al., 2001), but without a significant effect in grain yield (Wall et al., 2001).Few studies have been monitoring metabolic pathways in plants under elevated [CO2] (Li et al., 2008; Aranjuelo et al., 2013) and drought (Silvente et al., 2012; Nam et al., 2015; Wenzel et al., 2015). Furthermore, to our knowledge, there are only two reports in which metabolite profiles or metabolic pathways were investigated under the combination of these two environmental conditions (Sicher and Barnaby, 2012; Zinta et al., 2014). Although it is widely accepted that whole-plant metabolism and composition can impact grain filling and yield, metabolic studies conducted so far have focused on a specific plant organ. For instance, Sicher and Barnaby (2012) analyzed the metabolite profile of leaves from maize (Zea mays) plants that were grown under elevated [CO2] and drought, but they did not show how those environmental changes could have affected the metabolism of other tissues (e.g. culm and roots) or how they might have influenced the biomass or grain composition.In order to address how the combination of elevated [CO2] and drought can modify whole-plant metabolism as well as biomass composition in sorghum, this study aimed to (1) evaluate photosynthesis, growth, and yield; (2) underline the differences in biomass composition and primary metabolite profiles among leaves, culm, roots, prop roots, and grains; and (3) determine the effect of elevated [CO2] and drought on the primary metabolism of each organ.  相似文献   
119.
Placental (eutherian) mammals are currently classified into four superordinal clades (Afrotheria, Xenarthra, Laurasiatheria and Supraprimates) of which one, the Afrotheria (a unique lineage of African origin), is generally considered to be basal. Therefore, Afrotheria provide a pivotal evolutionary link for studying fundamental differences between the sex chromosomes of human/mouse (both representatives of Supraprimates and the index species for studies of sex chromosomes) and those of the distantly related marsupials. In this study, we use female fibroblasts to investigate classical features of X chromosome inactivation including replication timing of the X chromosomes and Barr body formation. We also examine LINE-1 accumulation on the X chromosomes of representative afrotherians and look for evidence of a pseudoautosomal region (PAR). Our results demonstrate that asynchronous replication of the X chromosomes is common to Afrotheria, as with other mammals, and Barr body formation is observed across all Placentalia, suggesting that mechanisms controlling this evolved before their radiation. Finally, we provide evidence of a PAR (which marsupials lack) and demonstrate that LINE1 is accumulated on the afrotherian and xenarthran X, although this is probably not due to transposition events in a common ancestor, but rather ongoing selection to retain recently inserted LINE1 on the X.  相似文献   
120.
Human acute lung injury is characterized by heterogeneous tissue involvement, leading to the potential for extremes of mechanical stress and tissue injury when mechanical ventilation, required to support critically ill patients, is employed. Our goal was to establish whether regional cellular responses to these disparate local mechanical conditions could be determined as a novel approach toward understanding the mechanism of development of ventilator-associated lung injury. We utilized cross-species genomic microarrays in a unilateral model of ventilator-associated lung injury in anesthetized dogs to assess regional cellular responses to local mechanical conditions that potentially contribute pathogenic mechanisms of injury. Highly significant regional differences in gene expression were observed between lung apex/base regions as well as between gravitationally dependent/nondependent regions of the base, with 367 and 1,544 genes differentially regulated between these regions, respectively. Major functional groupings of differentially regulated genes included inflammation and immune responses, cell proliferation, adhesion, signaling, and apoptosis. Expression of genes encoding both acute lung injury-associated inflammatory cytokines and protective acute response genes were markedly different in the nondependent compared with the dependent regions of the lung base. We conclude that there are significant differences in the local responses to stress within the lung, and consequently, insights into the cellular responses that contribute to ventilator-associated lung injury development must be sought in the context of the mechanical heterogeneity that characterizes this syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号