首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   4篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2003年   2篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1972年   1篇
  1971年   7篇
  1969年   1篇
  1966年   2篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1956年   1篇
  1955年   1篇
  1952年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
41.
A nonlinear structured cell population model of tumor growth is considered. The model distinguishes between two types of cells within the tumor: proliferating and quiescent. Within each class the behavior of individual cells depends on cell size, whereas the probabilities of becoming quiescent and returning to the proliferative cycle are in addition controlled by total tumor size. The asymptotic behavior of solutions of the full nonlinear model, as well as some linear special cases, is investigated using spectral theory of positive simigroup of operators. Supported in part by the National Science Foundation under Grant No. DMS-8722947  相似文献   
42.
We consider mating strategies for females who search for males sequentially during a season of limited length. We show that the best strategy rejects a given male type if encountered before a time‐threshold but accepts him after. For frequency‐independent benefits, we obtain the optimal time‐thresholds explicitly for both discrete and continuous distributions of males, and allow for mistakes being made in assessing the correct male type. When the benefits are indirect (genes for the offspring) and the population is under frequency‐dependent ecological selection, the benefits depend on the mating strategy of other females as well. This case is particularly relevant to speciation models that seek to explore the stability of reproductive isolation by assortative mating under frequency‐dependent ecological selection. We show that the indirect benefits are to be quantified by the reproductive values of couples, and describe how the evolutionarily stable time‐thresholds can be found. We conclude with an example based on the Levene model, in which we analyze the evolutionarily stable assortative mating strategies and the strength of reproductive isolation provided by them.  相似文献   
43.
This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.  相似文献   
44.
We consider the interaction between a general size-structured consumer population and an unstructured resource. We show that stability properties and bifurcation phenomena can be understood in terms of solutions of a system of two delay equations (a renewal equation for the consumer population birth rate coupled to a delay differential equation for the resource concentration). As many results for such systems are available (Diekmann et al. in SIAM J Math Anal 39:1023–1069, 2007), we can draw rigorous conclusions concerning dynamical behaviour from an analysis of a characteristic equation. We derive the characteristic equation for a fairly general class of population models, including those based on the Kooijman–Metz Daphnia model (Kooijman and Metz in Ecotox Env Saf 8:254–274, 1984; de Roos et al. in J Math Biol 28:609–643, 1990) and a model introduced by Gurney–Nisbet (Theor Popul Biol 28:150–180, 1985) and Jones et al. (J Math Anal Appl 135:354–368, 1988), and next obtain various ecological insights by analytical or numerical studies of special cases.  相似文献   
45.
46.
47.
48.
Dispersers often differ in body condition from non-dispersers. The social dominance hypothesis explains dispersal of weak individuals, but it is not yet well understood why strong individuals, which could easily retain their natal site, are sometimes exposed to risky dispersal. Based on the model for dispersal under kin competition by Hamilton and May, we construct a model where dispersal propensity depends on body condition. We consider an annual species that inhabits a patchy environment with varying patch qualities. Offspring body condition corresponds to the quality of the natal patch and competitive ability increases with body condition. Our main general result balances the fitness benefit from not dispersing and retaining the natal patch and the benefit from dispersing and establishing somewhere else. We present four different examples for competition, which all hint that dispersal of strong individuals may be a common outcome under the assumptions of the present model. In three of the examples, the evolutionarily stable dispersal probability is an increasing function of body condition. However, we found an example where, counterintuitively, the evolutionarily stable dispersal probability is a non-monotone function of body condition such that both very weak and very strong individuals disperse with high probability but individuals of intermediate body condition do not disperse at all.  相似文献   
49.
We define a fitness concept applicable to structured metapopulations consisting of infinitely many equally coupled patches. In addition, we introduce a more easily calculated quantity Rm that relates to fitness in the same manner as R0 relates to fitness in ordinary population dynamics: the Rm of a mutant is only defined when the resident population dynamics converges to a point equilibrium and Rm is larger (smaller) than 1 if and only if mutant fitness is positive (negative). Rm corresponds to the average number of newborn dispersers resulting from the (on average less than one) local colony founded by a newborn disperser. Efficient algorithms for calculating its numerical value are provided. As an example of the usefulness of these concepts we calculate the evolutionarily stable conditional dispersal strategy for individuals that can account for the local population density in their dispersal decisions. Below a threshold density x, at which staying and leaving are equality profitable, everybody should stay and above x everybody should leave, where profitability is measured as the mean number of dispersers produced through lines of descent consisting of non-dispersers.  相似文献   
50.
A cardiorespiratory model incorporating control of the human upper airway during sleep is described. Most previous models have not considered the possibility that the upper airway could be a limiting factor for gas exchange. Our model was developed to also predict certain pathophysiological phenomena in the cardiorespiratory system that characterize heavy snoring or sleep apnea. We started by adapting our collapsible upper airway model to include the impact of nasal passage and larynx, and extended the model with equations for gas exchange in the lungs. A feedback loop both to the respiratory pump and the upper airway dilator muscles was included. The model enabled successful breath-by-breath simulations of obstructive events of the upper airway. Although the model incorporates several physiologically relevant components of the system, the simulation results suggest that only few parameters suffice to predict the key adjustments that the cardiorespiratory system is known to make in patients with heavy snoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号