首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   16篇
  2022年   2篇
  2021年   8篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   5篇
  2013年   10篇
  2012年   11篇
  2011年   2篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1934年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
51.
To find out whether and how proteasome is involved in plant programmed cell death (PCD) we measured proteasome function in tobacco cells undergoing PCD as a result of heat shock (HS-PCD). Reactive oxygen species (ROS) production, cytochrome c levels and caspase-3-like protease activation were also measured in the absence or presence of MG132, a proteasome inhibitor. We show that proteasome activation occurs in early phase of HS-PCD upstream of the caspase-like proteases activation; moreover inhibition of proteasome function by MG132 results in prevention of PCD perhaps due to the prevention of ROS production, cytochrome c release and caspase-3-like protease activation.  相似文献   
52.
Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow‐2 (TBY‐2) cells subjected to moderate short‐term heat stress (SHS) and long‐term heat stress (LHS). The results indicate that TBY‐2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2O2, lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY‐2 cells were pretreated with galactone‐γ‐lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance.  相似文献   
53.

Background

Fructans, such as inulin, are dietary fibers which stimulate gastro-intestinal (GI) function acting as prebiotics. Lipopolysaccharide (LPS) impairs GI motility, through production of reactive oxygen species. The antioxidant activity of various fructans was tested and the protective effect of inulin on colonic smooth muscle cell (SMC) impairment, induced by exposure of human mucosa to LPS, was assessed in an ex vivo experimental model.

Methods

The antioxidant capacity of fructans was measured in an in vitro system that simulates cooking and digestion processes. Human colonic mucosa and submucosa, obtained from disease-free margins of resected segments for cancer, were sealed between two chambers, with the mucosal side facing upwards with Krebs solution with or without purified LPS from a pathogenic strain of Escherichia coli (O111:B4) and inulin (Frutafit IQ), and the submucosal side facing downwards into Krebs solution. The solutions on the submucosal side were collected following mucosal exposure to Krebs in the absence (N-undernatant) or presence of LPS (LPS-undernatant) or LPS+inulin (LPS+INU-undernatant). Undernatants were tested for their antioxidant activity and the effects on SMCs contractility. Inulin protective effects on mucosa and submucosa layers were assessed measuring the protein oxidation level in the experimental conditions analyzed.

Results

Antioxidant activity of inulin, which was significantly higher compared to simple sugars, remained unaltered despite cooking and digestion processes. Inulin protected the mucosal and submucosal layers against protein oxidation. Following exposure to LPS-undernatant, a significant decrease in maximal acetylcholine (Ach)-induced contraction was observed when compared to the contraction induced in cells incubated with the N-undernatant (4±1% vs 25±5% respectively, P<0.005) and this effect was completely prevented by pre-incubation of LPS with Inulin (35±5%).

Conclusions

Inulin protects the human colon mucosa from LPS-induced damage and this effect appears to be related to the protective effect of inulin against LPS-induced oxidative stress.  相似文献   
54.
Opportunistic fungal infections increase morbidity and mortality in COVID-19 patients monitored in intensive care units (ICU). As patients’ hospitalization days in the ICU and intubation period increase, opportunistic infections also increase, which prolongs hospital stay days and elevates costs. The study aimed to describe the profile of fungal infections and identify the risk factors associated with mortality in COVID-19 intensive care patients. The records of 627 patients hospitalized in ICU with the diagnosis of COVID-19 were investigated from electronic health records and hospitalization files. The demographic characteristics (age, gender), the number of ICU hospitalization days and mortality rates, APACHE II scores, accompanying diseases, antibiotic-steroid treatments taken during hospitalization, and microbiological results (blood, urine, tracheal aspirate samples) of the patients were recorded. Opportunistic fungal infection was detected in 32 patients (5.10%) of 627 patients monitored in ICU with a COVID-19 diagnosis. The average APACHE II score of the patients was 28 ± 6. While 25 of the patients (78.12%) died, seven (21.87%) were discharged from the ICU. Candida parapsilosis (43.7%) was the opportunistic fungal agent isolated from most blood samples taken from COVID-19 positive patients. The mortality rate of COVID-19 positive patients with candidemia was 80%. While two out of the three patients (66.6%) for whom fungi were grown from their tracheal aspirate died, one patient (33.3%) was transferred to the ward. Opportunistic fungal infections increase the mortality rate of COVID-19-positive patients. In addition to the risk factors that we cannot change, invasive procedures should be avoided, constant blood sugar regulation should be applied, and unnecessary antibiotics use should be avoided.  相似文献   
55.
The phylogenetic potential of entire 26S rDNA sequences in plants   总被引:6,自引:1,他引:5  
18S ribosomal RNA genes are the most widely used nuclear sequences for phylogeny reconstruction at higher taxonomic levels in plants. However, due to a conservative rate of evolution, 18S rDNA alone sometimes provides too few phylogenetically informative characters to resolve relationships adequately. Previous studies using partial sequences have suggested the potential of 26S or large-subunit (LSU) rDNA for phylogeny retrieval at taxonomic levels comparable to those investigated with 18S rDNA. Here we explore the patterns of molecular evolution of entire 26S rDNA sequences and their impact on phylogeny retrieval. We present a protocol for PCR amplification and sequencing of entire (approximately 3.4 kb) 26S rDNA sequences as single amplicons, as well as primers that can be used for amplification and sequencing. These primers proved useful in angiosperms and Gnetales and likely have broader applicability. With these protocols and primers, entire 26S rDNA sequences were generated for a diverse array of 15 seed plants, including basal eudicots, monocots, and higher eudicots, plus two representatives of Gnetales. Comparisons of sequence dissimilarity indicate that expansion segments (or divergence domains) evolve 6.4 to 10.2 times as fast as conserved core regions of 26S rDNA sequences in plants. Additional comparisons indicate that 26S rDNA evolves 1.6 to 2.2 times as fast as and provides 3.3 times as many phylogenetically informative characters as 18S rDNA; compared to the chloroplast gene rbcL, 26S rDNA evolves at 0.44 to 1.0 times its rate and provides 2.0 times as many phylogenetically informative characters. Expansion segment sequences analyzed here evolve 1.2 to 3.0 times faster than rbcL, providing 1.5 times the number of informative characters. Plant expansion segments have a pattern of evolution distinct from that found in animals, exhibiting less cryptic sequence simplicity, a lower frequency of insertion and deletion, and greater phylogenetic potential.   相似文献   
56.
The rate of "in vivo" reduction of cytochrome c by ascorbic acid (AA) increases from 69 nmoles of cytochrome c for minute, to 202 nanomoles when ascorbate oxidase is added. Since the AA oxidation by AA oxidase is a system to generate ascorbic free radical (AFR), data suggest that AFR is a better reducing compound than ascorbate in cytochrome c reduction. Since the addition of oxidized glutathione and human immunoglobulins (-S-S- bridge containing compounds) in the medium produces a remarkable decrease in cytochrome c reduction, it is suggested that AFR could also reduce -S-S- groups.  相似文献   
57.
Ascorbic acid content and redox-enzymes activities of AA system are determined in four population of Dasypyrum villosum adapted to live in different environments. In D. villosum from the driest and warmest environment (Pachino), AFR reductase and AA peroxidase have activities lower than in the other populations. The results point out the role of AA peroxidase as the main "scavenger" of the H2O2 produced by cell metabolism.  相似文献   
58.
Summary At least once a year the mountain pine beetle searches for lodgepole pines that provide a suitable habitat for a new brood. After attacking females feed, they produce an attractant pheromone that causes beetles to aggregate and, during outbreaks, to usually mass attack the focus tree. Near the completion of mass attack, incoming beetles are repelled and initiate attacks on adjacent recipient trees. An understanding of this switching process is useful for prescribing measures that minimize beetle damage.A mathematical model was developed to (1) describe beetle aggregation, (2) predict the relation of tree susceptibility and switching to changes in beetle density, (3) provide a structure for current knowledge, and (4) pose questions for further research. The model indicates that a high population density ensures mass aggregation and consequently successful tree colonization and switching. The model also indicates that the number of beetles attracted per attacking beetle differs from tree to tree, possibly depending on resin quality and production and/or the local flying density of beetles. Field and model results indicate that tree size appears to affect the repellence of beetles, suggesting that the attack density or the visual attractiveness of large trees is a factor. Further research could be directed at our assumptions on host resistance, repellence, pheromone emission rates, threshold concentrations, navigation, and pheromone dispersion. Return Address: Center for Quantitative Sciences, University of Washington, Seattle, Washington, 98195, USA  相似文献   
59.
The composition of oils from needles and cortex of Sitka spruce is unique. Cortex oil is essentially all monoterpene hydrocarbons, while needle oil may be up to 50% oxygenated monoterpenes. Very wide seasonal variations in composition occur in needle oil in young tissue. At bud burst, the oil is > 95% myrcene; this drops to about 40% at the end of summer. The oxygenated terpenes camphor and piperitone develop to about 20% each in concentration during the growing season.  相似文献   
60.
Mishra R  Gara SK  Mishra S  Prakash B 《Proteins》2005,59(2):332-338
Ras superfamily GTP-binding proteins regulate important signaling events in the cell. Ras, which often serves as a prototype, efficiently hydrolyzes GTP in conjunction with its regulator GAP. A conserved glutamine plays a vital role in GTP hydrolysis in most GTP-binding proteins. Mutating this glutamine in Ras has oncogenic effects, since it disrupts GTP hydrolysis. The analysis presented here is of GTP-binding proteins that are a paradox to oncogenic Ras, since they have the catalytic glutamine (Glncat) substituted by a hydrophobic amino acid, yet can hydrolyze GTP efficiently. We term these proteins HAS-GTPases. Analysis of the amino acid sequences of HAS-GTPases reveals prominent presence of insertions around the GTP-binding pocket. Homology modeling studies suggest an interesting means to achieve catalysis despite the drastic hydrophobic substitution replacing the key Glncat of Ras-like GTPases. The substituted hydrophobic residue adopts a "retracted conformation," where it is positioned away from the GTP, as its role in catalysis would be unproductive. This conformation is further stabilized by interactions with hydrophobic residues in its vicinity. These interacting residues are strongly conserved and hydrophobic in all HAS-GTPases, and correspond to residues Asp92 and Tyr96 of Ras. An experimental support for the "retracted conformation" of Switch II arises from the crystal structures of Ylqf and hGBP1. This conformation allows us to hypothesize that, unlike in classical GTPases, catalytic residues could be supplied by regions other than the Switch II (i.e., either the insertions or a neighboring domain).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号