首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15813篇
  免费   1399篇
  国内免费   1333篇
  2024年   45篇
  2023年   232篇
  2022年   476篇
  2021年   768篇
  2020年   634篇
  2019年   714篇
  2018年   705篇
  2017年   511篇
  2016年   688篇
  2015年   1032篇
  2014年   1241篇
  2013年   1266篇
  2012年   1461篇
  2011年   1310篇
  2010年   888篇
  2009年   734篇
  2008年   782篇
  2007年   703篇
  2006年   686篇
  2005年   555篇
  2004年   485篇
  2003年   518篇
  2002年   400篇
  2001年   243篇
  2000年   216篇
  1999年   206篇
  1998年   140篇
  1997年   118篇
  1996年   118篇
  1995年   112篇
  1994年   94篇
  1993年   57篇
  1992年   78篇
  1991年   64篇
  1990年   60篇
  1989年   44篇
  1988年   28篇
  1987年   25篇
  1986年   34篇
  1985年   25篇
  1984年   13篇
  1983年   7篇
  1982年   8篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1976年   2篇
  1970年   1篇
  1962年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
251.
Yuan  Shiru  Sun  Guohuan  Zhang  Yawen  Dong  Fang  Cheng  Hui  Cheng  Tao 《中国科学:生命科学英文版》2021,64(12):2030-2044
Science China Life Sciences - Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the...  相似文献   
252.
253.
254.
Osteoporosis is characterized by increased bone fragility, and the drugs used at present to treat osteoporosis can cause adverse reactions. Gentiopicroside (GEN), a class of natural compounds with numerous biological activities such as anti-resorptive properties and protective effects against bone loss. Therefore, the aim of this work was to explore the effect of GEN on bone mesenchymal stem cells (BMSCs) osteogenesis for a potential osteoporosis therapy. In vitro, BMSCs were exposed to GEN at different doses for 2 weeks, whereas in vivo, ovariectomized osteoporosis was established in mice and the therapeutic effect of GEN was evaluated for 3 months. Our results in vitro showed that GEN promoted the activity of alkaline phosphatase, increased the calcified nodules in BMSCs and up-regulated the osteogenic factors (Runx2, OSX, OCN, OPN and BMP2). In vivo, GEN promoted the expression of Runx2, OCN and BMP2, increased the level of osteogenic parameters, and accelerated the osteogenesis of BMSCs by activating the BMP pathway and Wnt/β-catenin pathway, effect that was inhibited using the BMP inhibitor Noggin and Wnt/β-catenin inhibitor DKK1. Silencing the β-catenin gene and BMP2 gene blocked the osteogenic differentiation induced by GEN in BMSCs. This block was also observed when only β-catenin was silenced, although the knockout of BMP2 did not affect β-catenin expression induced by GEN. Therefore, GEN promotes BMSC osteogenesis by regulating β-catenin-BMP signalling, providing a novel strategy in the treatment of osteoporosis.  相似文献   
255.
Ai  Xiaopeng  Dong  Xing  Guo  Ying  Yang  Peng  Hou  Ya  Bai  Jinrong  Zhang  Sanyin  Wang  Xiaobo 《Purinergic signalling》2021,17(2):229-240

Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.

  相似文献   
256.
257.
The ADP-ribosylation factor-like proteins (ARLs) have been proved to regulate the malignant phenotypes of several cancers. However, the exact role of ARLs in gastric cancer (GC) remains elusive. In this study, we systematically investigate the expression status, interactive relations, potential pathways, genetic variations and clinical values of ARLs in GC. We find that ARLs are significantly dysregulated in GC and involved in various cancer-related pathways. Subsequently, machine learning models identify ARL4C as one of the two most significant clinical indicators among ARLs for GC. Furthermore, ARL4C silencing remarkably inhibits the growth and metastasis of GC cells both in vitro and in vivo. Moreover, enrichment analysis indicates that ARL4C is highly correlated with TGF-β1 signalling. Correspondingly, TGF-β1 treatment dramatically increases ARL4C expression and ARL4C knockdown inhibits the phosphorylation level of Smads, downstream factors of TGF-β1. Meanwhile, the coexpression of ARL4C and TGF-β1 worsens the prognosis of GC patients. Our work comprehensively demonstrates the crucial role of ARLs in the carcinogenesis of GC and the specific mechanisms underlying the GC-promoting effects of TGF-β1. More importantly, we uncover the great promise of ARL4C-targeted therapy in improving the efficacy of TGF-β1 inhibitors for GC patients.  相似文献   
258.
The use of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Micro-scaled grooves can promote the maturation of cardiomyocytes by aligning them in order, but the mechanism of cardiomyocytes alignment has not been studied. From the level of calcium activity, gene expression and cell morphology, we verified that the W20H5 grooves can effectively promote the maturation of cardiomyocytes. The transient receptor potential channels (TRP channels) also play an important role in the maturation and development of cardiomyocytes. These findings support the engineered hPSC-CMs as a powerful model to study cardiac disease mechanism and partly mimic the myocardial morphological development. The important role of the TRP channels in the maturation and development of myocardium is first revealed.  相似文献   
259.
Transforming growth factor beta (TGF-β) plays an important role in the viral liver disease progression via controlling viral propagation and mediating inflammation-associated responses. However, the antiviral activities and mechanisms of TGF-β isoforms, including TGF-β1, TGF-β2 and TGF-β3, remain unclear. Here, we demonstrated that all of the three TGF-β isoforms were increased in Huh7.5 cells infected by hepatitis C virus (HCV), but in turn, the elevated TGF-β isoforms could inhibit HCV propagation with different potency in infectious HCV cell culture system. TGF-β isoforms suppressed HCV propagation through interrupting several different stages in the whole HCV life cycle, including virus entry and intracellular replication, in TGF-β/SMAD signalling pathway–dependent and TGF-β/SMAD signalling pathway–independent manners. TGF-β isoforms showed additional anti-HCV activities when combined with each other. However, the elevated TGF-β1 and TGF-β2, not TGF-β3, could also induce liver fibrosis with a high expression of type I collagen alpha-1 and α-smooth muscle actin in LX-2 cells. Our results showed a new insight into TGF-β isoforms in the HCV-related liver disease progression.  相似文献   
260.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non-coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up-regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR-212-5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR-212-5p was noticeably low in tumour tissues, and FZD5 expression level was down-regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR-212-5p/ FZD5/ Wnt/β-catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号