首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14645篇
  免费   1525篇
  国内免费   1471篇
  2024年   34篇
  2023年   192篇
  2022年   465篇
  2021年   827篇
  2020年   608篇
  2019年   767篇
  2018年   757篇
  2017年   551篇
  2016年   733篇
  2015年   929篇
  2014年   1132篇
  2013年   1125篇
  2012年   1315篇
  2011年   1202篇
  2010年   715篇
  2009年   688篇
  2008年   745篇
  2007年   642篇
  2006年   514篇
  2005年   465篇
  2004年   479篇
  2003年   492篇
  2002年   438篇
  2001年   375篇
  2000年   284篇
  1999年   235篇
  1998年   155篇
  1997年   114篇
  1996年   120篇
  1995年   75篇
  1994年   77篇
  1993年   61篇
  1992年   59篇
  1991年   64篇
  1990年   52篇
  1989年   34篇
  1988年   28篇
  1987年   27篇
  1986年   18篇
  1985年   24篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
5-Methyltetrahydrofolate (5MTHF) is the main form of folate in human plasma, and an important vitamin for human health. Photodegradation of folates may have played a role in the development of different human skin colours. 5MTHF can be degraded directly by exposure to ultraviolet radiation or by exposure to visible light in the presence of endogenous sensitizers like riboflavin (RF). These photochemical reactions were studied by absorption spectroscopy. While 5MTHF is stable under UV and visible light exposure in pure aqueous media, it is quickly degraded in the presence of RF during UVA and blue light exposure. The degradation of 5MTHF is dependent on the concentration of RF, but not on the concentration of 5MTHF itself. UVA and blue light gave similar reactions. Further investigations are necessary to evaluate the consequences of large light exposures in vivo in humans. Our findings should be taken into the ongoing discussion about the development of human skin colours. Due to the presence of RF in human blood, folate can be significantly degraded during prolonged or intense blue light exposure. Thus, a dark skin colour may be favourable for prevention of folate degradation under high solar fluence rates, such as in equatorial areas.  相似文献   
972.
Three new metabolites, asperfumigatin ( 1 ), isochaetominine ( 10 ), and 8′‐O‐methylasterric acid ( 21 ), together with nineteen known compounds, were obtained from the culture of Aspergillus fumigatus, an endophytic fungus from the Chinese liverwort Heteroscyphus tener (Steph.) Schiffn. Their structures were established by extensive analysis of the spectroscopic data. The absolute configurations of 1 and 10 were determined by analysis of their respective CD spectra. Cytotoxicity of these isolates against four human cancer cell lines was also determined.  相似文献   
973.
Two new labdane‐type diterpenes (adenanthic acids A and B; 1 and 2 , resp.) and three new labdane diterpene glycosides (adenanthosides A–C; 3 – 5 , resp.) were isolated from the roots of Isodon adenantha, together with 23 known constituents including seven diterpenoids ( 6 – 12 ), eight triterpenoids ( 13 – 20 ), one lignan glycoside ( 21 ), six steroids ( 22 – 27 ), and one ceramide ( 28 ). Their structures were elucidated by spectroscopic methods including extensive 2D‐NMR techniques. Cytotoxicity and antibacterial activities of the samples were measured by the MTT method and the filter paper disc agar diffusion method. But none of them showed significant activities.  相似文献   
974.
975.
976.
977.
Plant architecture is an important factor for crop production. Some members of microRNA156 (miR156) and their target genes SQUAMOSA Promoter‐Binding Protein‐Like (SPL) were identified to play essential roles in the establishment of plant architecture. However, the roles and regulation of miR156 is not well understood yet. Here, we identified a T‐DNA insertion mutant Osmtd1 (Oryza sativa multi‐tillering and dwarf mutant). Osmtd1 produced more tillers and displayed short stature phenotype. We determined that the dramatic morphological changes were caused by a single T‐DNA insertion in Osmtd1. Further analysis revealed that the T‐DNA insertion was located in the gene Os08g34258 encoding a putative inhibitor I family protein. Os08g34258 was knocked out and OsmiR156f was significantly upregulated in Osmtd1. Overexpression of Os08g34258 in Osmtd1 complemented the defects of the mutant architecture, while overexpression of OsmiR156f in wild‐type rice phenocopied Osmtd1. We showed that the expression of OsSPL3, OsSPL12, and OsSPL14 were significantly downregulated in Osmtd1 or OsmiR156f overexpressed lines, indicating that OsSPL3, OsSPL12, and OsSPL14 were possibly direct target genes of OsmiR156f. Our results suggested that OsmiR156f controlled plant architecture by mediating plant stature and tiller outgrowth and may be regulated by an unknown protease inhibitor I family protein.  相似文献   
978.
Cell proliferation is a fundamental event essential for plant organogenesis and contributes greatly to the final organ size. Although the control of cell proliferation in plants has been extensively studied, how the plant sets the cell number required for a single organ is largely elusive. Here, we describe the Arabidopsis SMALL ORGAN 4 (SMO4) that functions in the regulation of cell proliferation rate and thus final organ size. The smo4 mutant exhibits a reduced size of organs due to the decreased cell number, and further analysis reveals that such phenotype results from a retardation of the cell cycle progression during organ development. SMO4 encodes a homolog of NUCLEOLAR PROTEIN 53 (NOP53) in Saccharomyces cerevisiae and is expressed primarily in tissues undergoing cell proliferation. Nevertheless, further complementation tests show that SMO4 could not rescue the lethal defect of NOP53 mutant of S. cerevisiae. These results define SMO4 as an important regulator of cell proliferation during organ growth and suggest that SMO4 might have been evolutionarily divergent from NOP53.  相似文献   
979.
Glucose(Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium(Cd) concentration, and rescued Cdinduced chlorosis in Arabidopsis thaliana(Columbia ecotype,Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot signi fi cantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd(Glu t Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it signi fi cantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu t Cd treatment compared with Cd treatment alone, which was in accordance with the R e ssigni fi cant upregulation of the expression of tonoplastlocalized metal transporter genes, suggesting that compartmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increasing Cd fi xation in the root cell wall and sequestration into the vacuoles.  相似文献   
980.
Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild‐type Columbia‐0 (Col‐0) with a knockdown mutant of AteIF5A‐2, fbr12‐3 under Cd stress conditions. The results showed that the mutant fbr12‐3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A‐2 makes the mutant more Cd sensitive. Real‐time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12‐3 compared with Col‐0. As a result, an increase in MDA and H2O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号