首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98122篇
  免费   731篇
  国内免费   1321篇
  100174篇
  2024年   12篇
  2023年   82篇
  2022年   192篇
  2021年   321篇
  2020年   206篇
  2019年   233篇
  2018年   12053篇
  2017年   10796篇
  2016年   7618篇
  2015年   939篇
  2014年   624篇
  2013年   738篇
  2012年   4678篇
  2011年   13221篇
  2010年   12202篇
  2009年   8436篇
  2008年   10030篇
  2007年   11572篇
  2006年   433篇
  2005年   675篇
  2004年   1089篇
  2003年   1148篇
  2002年   878篇
  2001年   374篇
  2000年   243篇
  1999年   129篇
  1998年   67篇
  1997年   68篇
  1996年   46篇
  1995年   42篇
  1994年   41篇
  1993年   54篇
  1992年   60篇
  1991年   62篇
  1990年   31篇
  1989年   32篇
  1988年   36篇
  1987年   28篇
  1986年   19篇
  1985年   20篇
  1984年   14篇
  1983年   25篇
  1982年   9篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Plants adapted to special soil types are ideal for investigating evolutionary processes, including maintenance of intraspecific variation, adaptation, reproductive isolation, ecotypic differentiation, and the tempo and mode of speciation. Common garden and reciprocal transplant approaches show that both local adaptation and phenotypic plasticity contribute to edaphic (soil-related) specialization. Edaphic specialists evolve rapidly and repeatedly in some lineages, offering opportunities to investigate parallel evolution, a process less commonly documented in plants than in animals. Adaptations to soil features are often under the control of major genes and they frequently have direct or indirect effects on genes that contribute to reproductive isolation. Both reduced competitiveness and greater susceptibility to herbivory have been documented among some edaphic specialists when grown in ‘normal’ soils, suggesting that a high physiological cost of tolerance may result in strong divergent selection across soil boundaries. Interactions with microbes, herbivores, and pollinators influence soil specialization either by directly enhancing tolerance to extremes in soil conditions or by reducing gene flow between divergent populations. Climate change may further restrict the distribution of edaphic specialists due to increased competition from other taxa or, expand their ranges, if preadaptations to drought or other abiotic stressors render them more competitive under a novel climate.  相似文献   
122.
Aluminum is associated with etiology of many neurodegenerative diseases specially Alzheimer’s disease. Chronic exposure to aluminum via drinking water results in aluminum deposition in the brain that leads to cognitive deficits. The study aimed to determine the effects of aluminum on cholinergic biomarkers, i.e., acetylcholine level, free choline level, and choline acetyltransferase gene expression, and how cholinergic deficit affects novel object recognition and sociability in mice. Mice were treated with AlCl3 (250 mg/kg). Acetylcholine level, free choline level, and choline acetyltransferase gene expression were determined in cortex, hippocampus, and amygdala. The mice were subjected to behavior tests (novel object recognition and social novelty preference) to assess memory deficits. The acetylcholine level in cortex and hippocampus was significantly reduced in aluminum-treated animals, as compared to cortex and hippocampus of control animals. Acetylcholine level in amygdala of aluminum-treated animals remained unchanged. Free choline level in all the three brain parts was found unaltered in aluminum-treated mice. The novel object recognition memory was severely impaired in aluminum-treated mice, as compared to the control group. Similarly, animals treated with aluminum showed reduced sociability compared to the control mice group. Our study demonstrates that aluminum exposure via drinking water causes reduced acetylcholine synthesis in spite of normal free choline availability. This deficit is caused by reduced recycling of acetylcholine due to lower choline acetyltransferase level. This cholinergic hypofunction leads to cognitive and memory deficits. Moreover, hippocampus is the most affected brain part after aluminum intoxication.  相似文献   
123.
The biotechnological production of recombinant proteins is challenged by processes that decrease the yield, such as protease action, aggregation, or misfolding. Today, the variation of strains and vector systems or the modulation of inducible promoter activities is commonly used to optimize expression systems. Alternatively, aggregation to inclusion bodies may be a desired starting point for protein isolation and refolding. The discovery of the twin-arginine translocation (Tat) system for folded proteins now opens new perspectives because in most cases, the Tat machinery does not allow the passage of unfolded proteins. This feature of the Tat system can be exploited for biotechnological purposes, as expression systems may be developed that ensure a virtually complete folding of a recombinant protein before purification. This review focuses on the characteristics that make recombinant Tat systems attractive for biotechnology and discusses problems and possible solutions for an efficient translocation of folded proteins.  相似文献   
124.
Dairy and egg products constitute an important part of Western diets as they represent an excellent source of high-quality proteins, vitamins, minerals and fats. Dairy and egg products are highly diverse and their associations with a range of nutritional and health outcomes are therefore heterogeneous. Such associations are also often weak or debated due to the difficulty in establishing correct assessments of dietary intake. Therefore, in order to better characterize associations between the consumption of these foods and health outcomes, it is important to identify reliable biomarkers of their intake. Biomarkers of food intake (BFIs) provide an accurate measure of intake, which is independent of the memory and sincerity of the subjects as well as of their knowledge about the consumed foods. We have, therefore, conducted a systematic search of the scientific literature to evaluate the current status of potential BFIs for dairy products and BFIs for egg products commonly consumed in Europe. Strikingly, only a limited number of compounds have been reported as markers for the intake of these products and none of them have been sufficiently validated. A series of challenges hinders the identification and validation of BFI for dairy and egg products, in particular, the heterogeneous composition of these foods and the lack of specificity of the markers identified so far. Further studies are, therefore, necessary to validate these compounds and to discover new candidate BFIs. Untargeted metabolomic strategies may allow the identification of novel biomarkers, which, when taken separately or in combination, could be used to assess the intake of dairy and egg products.  相似文献   
125.
A viable option for increasing nitrogen (N) use efficiency and mitigation of negative impacts of N on the environment is to capitalize on multi-element interactions through implementation of nutrient management programs that provide balanced nutrition. Numerous studies have demonstrated the immediate efficacy of this approach in the developing regions like China and India as well as developed countries in North America. Based on 241 site-years of experiments in these countries, the first-year N recovery efficiency (RE) for the conventional or check treatments averaged 21% while the balanced treatments averaged 54% RE, for an average increase of 33% in RE due to balanced nutrition. Effective policies to promote adoption are most likely those that enable site-specific approaches to nutrient management decisions rather than sweeping, nation-wide incentives supporting one nutrient over another. Local farmers, advisers and officials need to be empowered with tools and information to help them define necessary changes in practices to create more balanced nutrient management.  相似文献   
126.
A cytoplasmic NADH oxidase (NOX) was purified from a soil bacteria, Brevibacterium sp. KU1309, which is able to grow in the medium containing 2-phenylethanol as the sole source of carbon under an aerobic condition. The enzyme catalyzed the oxidation of NADH to NAD+ involving two-electron reduction of O2 to H2O2. The molecular weight of the enzyme was estimated to be 102 kDa by gel filtration and 57 kDa by SDS-PAGE, which indicates that the NOX was a homodimer consisting of a single subunit. The enzyme was stable up to 70 degrees C at a broad range of pH from 7 to 11. The enzyme activity increased about ten-fold with the addition of ammonium salt, while it was inhibited by Zn2+ (39%), Cu2+ (41%), Hg2+ (72%) and Ag+ (37%). The enzyme acts on NADH, but not on NADPH. The regeneration of NAD+ utilizing this enzyme made selective oxidation of mandelic acid or L: -phenylalanine possible. This thermostable enzyme is expected to be applicable as a useful biocatalyst for NAD+ recycling.  相似文献   
127.
The effects of the Ca2+/H+ exchanger A23187 and the K+/H+ exchanger nigericin on the growth of Neurospora crassa were analyzed. Both ionophores had the same effects on the fungus. They both inhibited growth in liquid media, apical extension being more affected than protein synthesis. A sudden challenge to either ionophore on solid media rapidly stopped hyphal extension. Additionally, both ionophores induced profuse mycelium branching and upward hyphal growth. Hyphae growing on nigericin-containing media also burst at the apex. Both ionophores caused a rapid inhibition in the apically-occurring synthesis of structural wall polysaccharides, but they did not affect mitochondrial energy conservation. With the use of DiBAC, a membrane-potential sensitive fluorophore, it was excluded that their effects were due to depletion of the plasma membrane potential. Considering that both ionophores exchange H+ for different metallic ions, we concluded that their effect was due to dissipation of a proton gradient, which is directly or indirectly involved in the apical growth of the fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
128.
The microRNAs (miRNAs) are involved in multiple pathological processes among various types of tumors. However, the functions of miRNAs in benign brain tumors are largely unexplored. In order to explore the pathogenesis of the invasiveness in non-functional pituitary adenoma (NFPA), the miRNAs expression profile was analyzed between invasive and non-invasive non-functional pituitary adenoma by miRNAs microarray. Six most significant differentially expressed miRNAs were identified including four upregulated miRNAs hsa-miR-181b-5p, hsa-miR-181d, hsa-miR-191-3p, and hsa-miR-598 and two downregulated miRNAs hsa-miR-3676-5p and hsa-miR-383. The functions and corresponding signaling pathways of differentially expressed miRNAs were investigated by bioinformatics techniques, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The result of GO analysis indicates regulation of voltage-gated potassium channel activity, positive regulation of sodium ion transport, positive regulation of GTPase activity, negative regulation of Notch signaling pathway, etc. KEGG pathway reveals a series of biological processes, including prolactin signaling pathway, endocrine and other factor-regulated calcium reabsorption, fatty acid metabolism, neuroactive ligand-receptor interaction, etc. The miRNAs hsa-miR-181a-5p was verified by quantitative real-time PCR, and the expression level was in accordance with the microarray result. Our result can provide the evidence on featured miRNAs which play a prominent role in pituitary adenoma as effective biomarkers and therapeutic targets in the future.  相似文献   
129.
The x-ray structure of the PTX:NADPH:L22F human mutant DHFR ternary complex was used as a structural template to generate structural models for the following wild type DHFR complexes: PTX:DHFR:NADPH, TMP:DHFR:NADPH, EPM:DHFR:NADPH, and TMQ:DHFR:NADPH. Each of these complexes were subsequently modeled in a 60 Å cube of explicit water and minimized to a rms gradient of from 1.0-3.0·10-5 kcal·Å-1. For each complex, interaction energies were calculated for the antifolate interaction with each of the following: the DHFR binding site residues, the entire DHFR protein, the solvated complex (containing DHFR, NADPH, and solvent water), water alone, and NADPH. Additionally, each antifolate was subdivided into distinct substructural regions and interaction energy calculations were performed in order to evaluate their contributions to overall antifolate interaction. Each antifolate showed its most stable interaction with the solvated complex. Substructural regions which consisted of a nitrogen containing aromatic ring system contributed most to the stability of the antifolate interactions, while the hydrocarbon aromatic rings, methoxy, and ethoxy groups showed much less stable interaction energies. Since the different substructural regions of nonclassical antifolates differ in their contributions to overall antifolate binding, those substructural regions which exhibit relatively unfavorable interaction energies may constitute important targets in the design of improved DHFR inhibitors.  相似文献   
130.
Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号