首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21145篇
  免费   1766篇
  国内免费   2001篇
  24912篇
  2024年   71篇
  2023年   367篇
  2022年   767篇
  2021年   1254篇
  2020年   797篇
  2019年   1054篇
  2018年   992篇
  2017年   736篇
  2016年   1060篇
  2015年   1383篇
  2014年   1686篇
  2013年   1842篇
  2012年   1961篇
  2011年   1804篇
  2010年   1095篇
  2009年   955篇
  2008年   1102篇
  2007年   890篇
  2006年   723篇
  2005年   624篇
  2004年   534篇
  2003年   477篇
  2002年   375篇
  2001年   328篇
  2000年   276篇
  1999年   288篇
  1998年   194篇
  1997年   175篇
  1996年   146篇
  1995年   130篇
  1994年   125篇
  1993年   110篇
  1992年   123篇
  1991年   117篇
  1990年   73篇
  1989年   60篇
  1988年   47篇
  1987年   39篇
  1986年   30篇
  1985年   33篇
  1984年   30篇
  1983年   17篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
Li H  Pan JY  Liu XJ  Gao JX  Wu HK  Wang C  Peng XX 《Molecular bioSystems》2012,8(9):2303-2311
Protein-protein interactions are important biological processes and essential for a global understanding of cell functions. To date, little is known about the protein interactions and roles of the protein interacting networks and protein complexes in bacterial resistance to antibiotics. In the present study, we investigated protein complexes in Escherichia coli exposed to an antibiotic balofloxacin (BLFX). One homomeric and eight heteromeric protein complexes involved in BLFX resistance were detected. Potential roles of these complexes that are played in BLFX resistance were characterized and categorized into four functional areas: information streams, monosaccharide metabolism, response to stimulus and amino acid metabolic processes. Protein complexes involved in information streams and response to stimulus played more significant roles in the resistance. These results are consistent with previously published mechanisms on the acquired quinolone-resistance through the GyrA-GyrB complex, and two novel antibiotic-resistant pathways were identified: upregulation of genetic information flow and alteration of the response to a stimulus. The balance of the two pathways will be a viable means of reducing BLFX-resistance.  相似文献   
862.
A fundamental problem in proteomics is the identification of protein complexes and their components. We have used analytical ultracentrifugation with a fluorescence detection system (AU-FDS) to precisely and rapidly identify translation complexes in the yeast Saccharomyces cerevisiae. Following a one-step affinity purification of either poly(A)-binding protein (PAB1) or the large ribosomal subunit protein RPL25A in conjunction with GFP-tagged yeast proteins/RNAs, we have detected a 77S translation complex that contains the 80S ribosome, mRNA, and components of the closed-loop structure, eIF4E, eIF4G, and PAB1. This 77S structure, not readily observed previously, is consistent with the monosomal translation complex. The 77S complex abundance decreased with translational defects and following the stress of glucose deprivation that causes translational stoppage. By quantitating the abundance of the 77S complex in response to different stress conditions that block translation initiation, we observed that the stress of glucose deprivation affected translation initiation primarily by operating through a pathway involving the mRNA cap binding protein eIF4E whereas amino acid deprivation, as previously known, acted through the 43S complex. High salt conditions (1M KCl) and robust heat shock acted at other steps. The presumed sites of translational blockage caused by these stresses coincided with the types of stress granules, if any, which are subsequently formed.  相似文献   
863.
Exenatide (exendin-4 analogue) is widely used in clinics and shows a neuroprotective effect. The main objectives of the present study were to prove that retinal ganglion cells (RGC-5) express GLP-1R, to ascertain whether exenatide prevents a high-glucose-induced RGC-5 impairment, to determine the appropriate concentration of exenatide to protect RGC-5 cells, and to explore the neuroprotective mechanisms of exenatide. Immunofluorescence and Western blot analyses demonstrated that RGC-5 cells express GLP-1R. We incubated RGC-5 cells with 25 mM glucose prior to incubation with either 25 mM glucose, 55 mM glucose (high), high glucose plus exenatide or high glucose plus a GLP-1R antagonist. The survival rates of the cells were measured by CCK-8, and cellular injury was detected by electron microscopy. There were statistical differences between the high-glucose group and the control group (P<0.05). Exenatide improved the survival rate of the cells and suppressed changes in the mitochondrial morphology. The optimum concentration of exenatide to protect the RGC-5 cells from high-glucose-induced RGC injury was 0.5 μg/ml, and this protective effect could be inhibited by exendin (9-39). To further study the mechanism underlying the beneficial effects of exenatide, the expression levels of cytochrome c, Bcl-2, Bax and caspase-3 were analysed by Western blot. The present study showed that treatment with exenatide significantly inhibited cytochrome c release and decreased the intracellular expression levels of Bax and caspase-3, whereas Bcl-2 was increased (P<0.05). These results suggested that GLP-1R activation can inhibit the cellular damage that is induced by high glucose. A mitochondrial mechanism might play a key role in the protective effect of exenatide on the RGC-5 cells, and exenatide might be beneficial for patients with diabetic retinopathy.  相似文献   
864.
The cholesterol side chain cleavage enzyme (CYP11A1) gene plays an important part in the synthesis of sex hormones and has been reported to be involved in the pathogenesis of polycystic ovary syndrome. A case-control study including 314 PCOS patients and 314 controls was conducted to assess the association of the SNPs rs4077582 and rs11632698 in CYP11A1 with PCOS using the polymerase chain reaction-restriction fragment length polymorphism method. Thereafter, 100 DNA samples were re-genotyped by direct sequencing for confirmation. The genotypic distribution of rs4077582 in women with PCOS differed from that in controls (P = 0.002). No such distributional difference was found in rs11632698 (P = 0.912). Data from our previous study of these two SNPs in another population including 290 PCOS patients and 344 controls was combined with the current data. Combined analysis (a total of 1262 participants, including 604 PCOS patients and 658 control women) showed a much more significant difference in the genotypic distribution of rs4077582 between PCOS and controls (P < 0.001). The T allele was more prevalent in PCOS patients (Odds ratio = 1.314; 95 % CI 1.122-1.540). The testosterone levels among the three genotypes for rs4077582 were different in the control group, as were the LH levels and the LH/FSH ratio. Therefore, SNP rs4077582 in CYP11A1 is strongly associated with susceptibility to PCOS and may alter the testosterone levels by the regulation of LH in different genotypes. No association was observed in rs11632698.  相似文献   
865.

Purpose

Genetic basis of Developmental dysplasia of the hip (DDH) remains largely unknown. To find new susceptibility genes for DDH, we carried out a genome-wide association study (GWAS) for DDH.

Methods

We enrolled 386 radiology confirmed DDH patients and 558 healthy controls (Set A) to conduct a genome-wide association study (GWAS). Quality-control was conducted at both the sample and single nucleotide polymorphism (SNP) levels. We then conducted a subsequent case-control study to replicate the association between a promising loci, rs6060373 in UQCC gene and DDH in an independent set of 755 cases and 944 controls (set B).

Results

In the DDH GWAS discovering stage, 51 SNPs showed significance of less than 10-4, and another 577 SNPs showed significance of less than 10-3. In UQCC, all the 12 genotyped SNPs showed as promising risk loci. Genotyping of rs6060373 in set A showed the minor allele A as a promising risk allele (p = 4.82*10-7). In set A, the odds ratio of allele A was 1.77. Genotyping of rs6060373 in Set B produced another significant result (p = 0.0338) with an odds ratio of 1.18 for risk allele A. Combining set A and set B, we identified a total p value of 3.63*10-6 with the odds ratio of 1.35 (1.19–1.53) for allele A.

Conclusion

Our study demonstrates common variants of UQCC, specifically rs6060373, are associated with DDH in Han Chinese population.  相似文献   
866.

Aims

High triglycerides (TG) and low high-density lipoprotein cholesterol (HDL-C) are cardiovascular risk factors. A positive correlation between elevated TG/HDL-C ratio and all-cause mortality and cardiovascular events exists in women. However, utility of TG to HDL-C ratio for prediction is unknown among acute coronary syndrome (ACS).

Methods

Fasting lipid profiles, detailed demographic data, and clinical data were obtained at baseline from 416 patients with ACS after coronary revascularization. Subjects were stratified into three levels of TG/HDL-C. We constructed multivariate Cox-proportional hazard models for all-cause mortality over a median follow-up of 3 years using log TG to HDL-C ratio as a predictor variable and analyzing traditional cardiovascular risk factors. We constructed a logistic regression model for major adverse cardiovascular events (MACEs) to prove that the TG/HDL-C ratio is a risk factor.

Results

The subject’s mean age was 64 ± 11 years; 54.5% were hypertensive, 21.8% diabetic, and 61.0% current or prior smokers. TG/HDL-C ratio ranged from 0.27 to 14.33. During the follow-up period, there were 43 deaths. In multivariate Cox models after adjusting for age, smoking, hypertension, diabetes, and severity of angiographic coronary disease, patients in the highest tertile of ACS had a 5.32-fold increased risk of mortality compared with the lowest tertile. After adjusting for conventional coronary heart disease risk factors by the logistic regression model, the TG/HDL-C ratio was associated with MACEs.

Conclusion

The TG to HDL-C ratio is a powerful independent predictor of all-cause mortality and is a risk factor of cardiovascular events.  相似文献   
867.

Introduction

Severe cervical contracture after burns causes obvious impairment of neck movement and the aesthetic silhouette. Although various surgical techniques for treatment have been described, there is not a definitive strategy to guide treatment. Over the past 6 years, we have been utilizing a region-oriented and staged treatment strategy to guide reconstruction of severe cervical contracture. Satisfactory results have been achieved with this strategy.

Methods

The first stage of treatment focuses on the anterior cervical region and submental region. Procedures include cicatrix resection, contracture release, division and elevation of the platysma to form two platysma flaps, and skin grafting. Three to six months later, the second stage treatment is performed, which localize to the mental region. This includes scar resection, correction of the lower lip eversion, and reconstruction with free (para)scapular skin flap. Three subtypes of cervicomental angle that we proposed were measured as quantitative tool for evaluation of the reconstruction.

Results

24 patients who completed the treatment were reviewed. By the 3rd postoperative month, their CM angles changed significantly: the soft tissue CM angle was reduced from 135.0° ± 17.3° to 111.1° ± 11.3°, the osseous CM angle increased from 67.1° ± 9.0° to 90.5° ± 11.6° and the dynamic CM angle increased from 21.9° ± 8.7° to 67.4° ± 13.1°. 22 in 24 (91.7%) of these patients gained notable improvement of cervical motion and aesthetic contour.

Conclusions

Our results suggest that the region-oriented and staged treatment strategy can achieve satisfactory functional and aesthetic results, combining usage of both skin graft and skin flap while minimizing the donor site morbidity.  相似文献   
868.

Background

Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms.

Methods

In vivo: A sensitizing dose of LPS (50 µg) was administered i.p. to female mice before anesthesia with either 3% sevoflurane or phenobarbital i.p. After stabilization, the mice were challenged with 5 µg of intratracheal LPS to mimic inflammatory attack. The effects of sevoflurane were assessed by measurement of airway responsiveness to methacholine, histological examination, and IL-1, IL-6, TNF-α levels in bronchoalveolar lavage fluid (BALF). Protein and gene expression of TLR4 and NF-κB were also assessed. In vitro: After pre-sensitization of ASMCs and ASM segments for 24h, levels of TLR4 and NF-κB proteins in cultured ASMCs were measured after continuous LPS exposure for 1, 3, 5, 12 and 24h in presence or absence of sevoflurane. Constrictor and relaxant responsiveness of ASM was measured 24 h afterwards.

Results

The mRNA and protein levels of NF-κB and TLR4 in ASM were increased and maintained at high level after LPS challenge throughout 24h observation period, both in vivo and in vitro. Sevoflurane reduced LPS-induced airway hyperresponsiveness, lung inflammatory cell infiltration and proinflammatory cytokines release in BALF as well as maximal isometric contractile force of ASM segments to acetylcholine, but it increased maximal relaxation response to isoproterenol. Treatment with specific NF-κB inhibitor produced similar protections as sevoflurane, including decreased expressions of TLR4 and NF-κB in cultured ASMCs and improved pharmacodynamic responsiveness of ASM to ACh and isoproterenol.

Conclusions

This study demonstrates the crucial role of TLR4 activation in ASMCs during ALI in response to LPS. Sevoflurane exerts direct relaxant and anti-inflammatory effects in vivo and in vitro via inhibition of TLR4/NF-κB pathway.  相似文献   
869.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   
870.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号