首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16526篇
  免费   1250篇
  国内免费   1188篇
  2024年   42篇
  2023年   238篇
  2022年   571篇
  2021年   948篇
  2020年   570篇
  2019年   760篇
  2018年   758篇
  2017年   557篇
  2016年   786篇
  2015年   1036篇
  2014年   1287篇
  2013年   1413篇
  2012年   1506篇
  2011年   1364篇
  2010年   826篇
  2009年   742篇
  2008年   843篇
  2007年   702篇
  2006年   561篇
  2005年   503篇
  2004年   417篇
  2003年   362篇
  2002年   268篇
  2001年   250篇
  2000年   222篇
  1999年   231篇
  1998年   158篇
  1997年   135篇
  1996年   121篇
  1995年   110篇
  1994年   103篇
  1993年   87篇
  1992年   102篇
  1991年   100篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
Recent reports have demonstrated that Sox9+HNF4α+ hepatocytes are involved in liver regeneration after chronic liver injury; however, little is known about the origin of Sox9+HNF4α+ hepatocytes and the regulatory mechanism. Employing a combination of chimeric lineage tracing, immunofluorescence, and immunohistochemistry, we demonstrate that Sox9+HNF4α+ hepatocytes, generated by transition from mature hepatocytes, play an important role in the initial phase after partial hepatectomy (PHx). Additionally, knocking down the expression of Sox9 suppresses hepatocyte proliferation and blocks the recovery of lost hepatic tissue. In vitro and in vivo assays demonstrated that Bcl3, activated by LPS, promotes hepatocyte conversion and liver regeneration. Mechanistically, Bcl3 forms a complex with and deubiquitinates YAP1 and further induces YAP1 to translocate into the nucleus, resulting in Sox9 upregulation and mature hepatocyte conversion. We demonstrate that Bcl3 promotes Sox9+HNF4α+ hepatocytes to participate in liver regeneration, and might therefore be a potential target for enhancing regeneration after liver injury.Subject terms: Ubiquitylation, Transdifferentiation, NF-kappaB, Regeneration, Stem-cell research  相似文献   
842.
Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.  相似文献   
843.
844.
Ubiquitination is vital for multiple cellular processes via dynamic modulation of proteins related to cell growth, proliferation, and survival. Of the ubiquitination system components, E3 ubiquitin ligases and deubiquitinases have the most prominent roles in modulating tumor metastasis. This review will briefly summarize the observations and underlying mechanisms of multiple E3 ubiquitin ligases and deubiquitinases to regulate tumor metastasis. Further, we will discuss the relationship and importance between ubiquitination components and tumor progression.  相似文献   
845.
Genomic instability plays a key role in the initiation and progression of colorectal cancer (CRC). Although cancer driver genes in CRC have been well characterized, identifying novel genes associated with carcinogenesis and treatment remains challenging because of tumor heterogeneity. Here, we analyzed the genomic alterations of 45 samples from CRC patients in northern China by whole-exome sequencing. In addition to the identification of six well-known CRC driver genes (APC, TP53, KRAS, FBXW7, PIK3CA, and PABPC), two tumor-related genes (MTCH2 and HSPA6) were detected, along with RRP7A and GXYLT1, which have not been previously linked to cancer. GXYLT1 was mutated in 40% (18/45) of the samples in our cohort. Functionally, GXYLT1 promoted migration and invasion in vitro and metastasis in vivo, while the GXYLT1S212* mutant induced significantly greater effect. Furthermore, both GXYLT1 and GXYLT1S212* interacted with ERK2. GXYLT1 induced metastasis via a mechanism involving the Notch and MAPK pathways, whereas the GXYLT1S212* mutant mainly promoted metastasis by activating the MAPK pathway. We propose that GXYLT1 acts as a novel metastasis-associated driver gene and GXYLT1S212* might serve as a potential indicator for therapies targeting the MAPK pathway in CRC.Subject terms: Cancer genomics, Colorectal cancer, Metastasis, Oncogenes, Cell signalling  相似文献   
846.
硅烷偶联剂的研究与应用   总被引:21,自引:0,他引:21  
硅烷偶联剂是应用最广的一类偶联剂。本文阐述了其结构特征、偶联机理与使用技术,着重综述了硅烷偶联剂的应用范围与具体应用效果,最后展望了硅烷偶联剂的发展方向。  相似文献   
847.
Mammalian cells utilize Akt‐dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low‐density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B‐containing lipoproteins. However, signaling‐controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca2+ and calcium/calmodulin‐dependent protein kinase II‐mediated signalings. This response is independent of induction of autophagy. Amino acid stress‐induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet‐induced hypercholesterolemia in heterozygous LDLR‐deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling‐controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.  相似文献   
848.
1. Colony-stimulating factor (CSF-1) was isolated from a large volume of fresh normal human urine by 5 steps of purification and enrichment. 2. The purification factor is 100,000 fold and the purified compound exhibits a 2.16 x 10(7) U/mg of protein sp. act. 3. The isolated CSF-1 is a sialoglycoprotein with 41.5% of carbohydrate. The almost complete removal of this carbohydrate moiety (up to 91%) was achieved by incubation with trifluoromethane sulfonic acid. 4. The deglycosylated CSF-1 (DG-CSF-1) possesses an apparent Mr 38,000 compared to native CSF-1 with an initial Mr 57,000 (Goa et al., 1988). 5. The features of the interaction of radio-iodinated [125I]CSF-1 with single cell suspensions from various human tissues (bone marrow, spleen, blood, peritoneal cavity, alveolar lavage, lymph node and thymus), were studied. 6. The binding activity of peritoneal macrophages was the highest among the cells examined and erythrocytes, thymus and blood granulocytes showed no CSF-1 binding. 7. On incubation with [125I]CSF-1 at 0 degrees C, cellular binding of [125I]CSF-1 reached a stable maximum within 16 hr. This is in contrast to the association behaviour at higher temperature. 8. At 37 degrees C, cellular associated [125I]CSF-1 levels reached, within 90 min, an unstable maximum which was up to 10 times less than that occurring under the same conditions at 0 degree C. From the Scatchard plot analysis, we obtained the affinity constant and the number of receptor(s). 9. The binding site is sensitive to trypsin. 10. The receptor alone, (labelled by cross-linking to [125I]CSF-1 with di-succinylimidyl-suberate), is a polypeptide with an approx. Mr 110,000. 11. Our results showed that the receptor of CSF-1 is a tyrosin-kinase.  相似文献   
849.
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis.However,little is known about SARS-CoV-2 host receptors with the e...  相似文献   
850.
ObjectivesThe rats are crucial animal models for the basic medical researches. Rat embryonic stem cells (ESCs), which are widely studied, can self‐renew and exhibit pluripotency in long‐term culture, but the mechanism underlying how they exit pluripotency remains obscure. To investigate the key modulators on pluripotency exiting in rat ESCs, we perform genome‐wide screening using a unique rat haploid system.Materials and MethodsRat haploid ESCs (haESCs) enable advances in the discovery of unknown functional genes owing to their homozygous and pluripotent characteristics. REX1 is a sensitive marker for the naïve pluripotency that is often utilized to monitor pluripotency exit, thus rat haESCs carrying a Rex1‐GFP reporter are used for genetic screening. Genome‐wide mutations are introduced into the genomes of rat Rex1‐GFP haESCs via piggyBac transposon, and differentiation‐retarded mutants are obtained after random differentiation selection. The exact mutations are elucidated by high‐throughput sequencing and bioinformatic analysis. The role of candidate mutation is validated in rat ESCs by knockout and overexpression experiments, and the phosphorylation of ERK1/2 (p‐ERK1/2) is determined by western blotting.ResultsHigh‐throughput sequencing analysis reveals numerous insertions related to various pathways affecting random differentiation. Thereafter, deletion of Thop1 (one candidate gene in the screened list) arrests the differentiation of rat ESCs by inhibiting the p‐ERK1/2, whereas overexpression of Thop1 promotes rat ESCs to exit from pluripotency.ConclusionsOur findings provide an ideal tool to study functional genomics in rats: a homozygous haploid system carrying a pluripotency reporter that facilitates robust discovery of the mechanisms involved in the self‐renewal or pluripotency of rat ESCs.

Differentiation of pluripotent rat embryonic stem cells (ESCs) in vitro is difficult to achieve for unknown mechanisms. Rat haploid ESCs (haESCs) have been validated as a powerful tool to target unknown functional genes and pathways based on homozygous genetic screening. Xu et al. utilized Rex1‐GFP labelled‐rat haESCs to conduct genome‐scale screening of genes modulating pluripotency exiting. Validation experiments showed that Thop1 (one of the screened out genes) played very important roles in the random differentiation of rat ESCs in vitro via modulating phosphorylation of ERK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号