首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   40篇
  2021年   2篇
  2020年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2002年   6篇
  2001年   3篇
  2000年   10篇
  1999年   7篇
  1998年   3篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   10篇
  1985年   5篇
  1983年   4篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1973年   9篇
  1972年   2篇
  1971年   5篇
  1969年   3篇
  1968年   2篇
  1965年   2篇
  1963年   1篇
  1936年   2篇
  1932年   1篇
  1927年   5篇
  1926年   4篇
  1924年   2篇
排序方式: 共有210条查询结果,搜索用时 156 毫秒
91.
Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein–protein interactions: an N‐terminal VAMP‐associated protein (VAP)/major sperm protein (MSP) domain and a C‐terminal ankyrin‐repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non‐plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis.  相似文献   
92.
The cyanobacteria Phormidium valderianum, P. tenue and Microcoleus chthonoplastes and the green algae Rhizoclonium fontinale, Ulva intestinalis, Chara zeylanica and Pithophora oedogoniana were exposed to hydrogen tetrachloroaurate solution and were screened for their suitability for producing nano‐gold. All three cyanobacteria genera and two of the green algae (Rhizoclonium fontinale and Ulva intestinalis) produced gold nanoparticles intracellularly, confirmed by purple colouration of the thallus within 72?h of treatment at 20°C. Extracted nanoparticle solutions were examined by UV‐vis spectroscopy, transmission electron microscopy (TEM) and X‐ray diffractometry (XRD). XRD confirmed the reduction of Au (III) to Au (0). UV‐vis spectroscopy and TEM studies indicated the production of nanoparticles having different shapes and sizes. Phormidium valderianum synthesized mostly spherical nanoparticles, along with hexagonal and triangular nanoparticles, at basic and neutral pHs (pH 9 and pH 7, respectively). Medicinally important gold nanorods were synthesized (together with gold nanospheres) only by P. valderianum at acidic pH (pH 5); this was initially determined by two surface plasmon bands in UV‐vis spectroscopy and later confirmed by TEM. Spherical to somewhat irregular particles were produced by P. tenue and Ulva intestinalis (TEM studies). The UV‐vis spectroscopy of the supernatant of other algal extracts indicated the formation of mostly spherical particles. Production of gold nanoparticles by algae is more ecofriendly than purely chemical synthesis. However, the choice of algae is important: Chara zeylanica and Pithophora oedogoniana were found to be unable to produce nanoparticles.  相似文献   
93.
Cunningham FX  Gantt E 《The Plant cell》2011,23(8):3055-3069
A few species in the genus Adonis are the only land plants known to produce the valuable red ketocarotenoid astaxanthin in abundance. Here, we ascertain the pathway that leads from the β-rings of β-carotene, a carotenoid ubiquitous in plants, to the 3-hydroxy-4-keto-β-rings of astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) in the blood-red flowers of Adonis aestivalis, an ornamental and medicinal plant commonly known as summer pheasant's eye. Two gene products were found to catalyze three distinct reactions, with the first and third reactions of the pathway catalyzed by the same enzyme. The pathway commences with the activation of the number 4 carbon of a β-ring in a reaction catalyzed by a carotenoid β-ring 4-dehydrogenase (CBFD), continues with the further dehydrogenation of this carbon to yield a carbonyl in a reaction catalyzed by a carotenoid 4-hydroxy-β-ring 4-dehydrogenase, and concludes with the addition of an hydroxyl group at the number 3 carbon in a reaction catalyzed by the erstwhile CBFD enzyme. The A. aestivalis pathway is both portable and robust, functioning efficiently in a simple bacterial host. Our elucidation of the pathway to astaxanthin in A. aestivalis provides enabling technology for development of a biological production process and reveals the evolutionary origin of this unusual plant pathway, one unrelated to and distinctly different from those used by bacteria, green algae, and fungi to synthesize astaxanthin.  相似文献   
94.
Gantt  E. 《Journal of phycology》2000,36(S3):23-23
The upper northwestern Gulf basin is characterized by a relatively shallow but well-developed continental shelf with an extensive system of mid- and outer shelf hard banks of varying origin and composition. Observations done by our laboratory while participating in monitoring cruises to the National Marine Sanctuaries of the East and West Banks of the Texas Flower Gardens, Stetson Banks (TX) and Sonnier Banks (LA) reveal a surprisingly different floristic composition among the sites. Several range extensions, new macro-algal records for the Gulf of Mexico, and new species imply a much more complex Algal Zone community than the one proposed by Rezak et al. (1985). Our ongoing project includes the development of a modern taxonomic, phylogenetic, morphological and genetic database essential to informed management for preservation of biological diversity. It also provides a framework of seasonal algal composition against which long-term trends and anomalies in algal distribution and health of the Gulf of Mexico can be assessed at future dates.  相似文献   
95.
Human tumor cells and cells from cancer-prone individuals, compared with those from normal individuals, show a significantly higher incidence of chromatid breaks and gaps seen in metaphase cells immediately after G2 X irradiation. Previous studies with DNA repair-deficient mutants and DNA repair inhibitors strongly indicate that the enhancement results from a G2 deficiency(ies) in DNA repair. We report here biochemical evidence for a DNA repair deficiency that correlates with the cytogenetic studies. In the alkaline elution technique, after a pulse label with radioactive thymidine in the presence of 3-acetylaminobenzamide (a G2-phase blocker) and X irradiation, DNA from tumor or cancer-prone cells elutes more rapidly during the postirradiation period than that from normal cells. These results indicate that the DNA of tumor and cancer-prone cells either repairs more slowly or acquires more breaks than that of normal cells; breaks can accumulate during incomplete or deficient repair processes. The kinetic difference between normal and tumor or cancer-prone cells in DNA strand-break repair reaches a maximum within 2 h, and this maximum corresponds to the kinetic difference in chromatid aberration incidence following X irradiation reported previously. These findings support the concept that cells showing enhanced G2 chromatid radiosensitivity are deficient in DNA repair. The findings could also lead to a biochemical assay for cancer susceptibility.  相似文献   
96.
Owing to their role as vectors of malaria parasites, species of the Anopheles maculipennis complex (Diptera: Culicidae) Meigen were intensively studied in the past, but with the disappearance of malaria in Germany in the middle of the last century, the interest in this field of research declined. A comprehensive ecological analysis of the current species distribution for Germany is lacking. Between 2010 and 2013, a total of 1445 mosquitoes of the An. maculipennis complex were collected at 72 different sites in Germany. The samples comprise 722 single individuals as well as 723 individuals in 90 pools of up to 25 mosquitoes. All samples were analysed with newly developed species‐specific qPCR assays for the identification of the four German species using nucleotide differences within the internal transcribed spacer 2 (ITS2) ribosomal DNA. All gathered data were used for species distribution modelling. The overall prevalence of An. messeae s.l. was highest with 98.89% of all pools; An. daciae with 6.93% of all individuals and An. messeae s.s. with 69.53%. The prevalence of the other two species was relatively low: An. maculipennis s.s. with 13.30% of all individuals (6.67% of all pools) and An. atroparvus with 1.80% of all individuals (1.11% of all pools).  相似文献   
97.
98.
99.
The growth of Chinese hamster ovary cells in a complete medium lacking asparagine is inhibited by beta-aspartylhydroxamate. The inhibition is overcome by the presence of asparagine in the growth medium. beta-Aspartylhydroxamate inhibits the activity of both asparagine synthetase and asparaginyl-tRNA synthetase in vitro. beta-Aspartylhydroxamate-resistant clones of Chinese hamster ovary cells have been isolated and three of these have been characterized. One clone, AH12, is 3-fold more resistant to beta-aspartylhydroxamate than the parental line and has 2 times higher levels of asparagine synthetase activity. Strains AH2 and AH5 are 6- to 7-fold more resistant to beta-aspartylhydroxamate and have 5 times higher levels of asparagine synthetase. The regulation of the expression of asparagine synthetase is altered in all three resistant cell lines. Whereas asparagine synthetase activity varies 2- to 3-fold in response to the asparagine content of the medium or to the extent of aminoacylation of tRNALeu in the parental cells, the activity of asparagine synthetase in the resistant cells is elevated under all growth conditions. No significant changes in the Km for substrates, Ki for beta-aspartylhydroxamate, or thermal stability were found for the asparagine synthetase of the resistant cells. These variants should prove useful in understanding the mechanisms involved in regulating the levels of asparagine synthetase in mammalian cells.  相似文献   
100.
Cool-white fluorescent light induces crosslinks in DNA when proliferating cells are exposed at 37 degrees C for 20 h to 4.6 J/m2/s in culture medium supplemented with fetal bovine serum. Using the Kohn alkaline elution technique, we now find that: 1. Increased light intensity increases DNA crosslinks. 2. The crosslinking is medium-mediated. 3. Oxygen enhances the crosslinking. 4. The extent of crosslinking is decreased at high cell density. 5. The crosslinks can be removed by digestion with proteinase K (0.02 to 0.50 mg/ml). 6. Human cell lines including those derived from adult prostate, fetal lung (IMR-90) and mixed fetal tissues are susceptible to light-induced crosslinks. 7. Crosslinkage is not decreased by addition of catalase to the medium and the effective wavelength is probably between 450 nm and 490 nm. From these results we conclude that the mechanism of light-induced crosslinks differs from that of light-induced chromatid breaks and that the major lesion observed is protein-DNA cross-linkage rather than DNA strand breaks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号