首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   39篇
  210篇
  2021年   2篇
  2020年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2002年   6篇
  2001年   3篇
  2000年   10篇
  1999年   7篇
  1998年   3篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   10篇
  1985年   5篇
  1983年   4篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1973年   9篇
  1972年   2篇
  1971年   5篇
  1969年   3篇
  1968年   2篇
  1965年   2篇
  1963年   1篇
  1936年   2篇
  1932年   1篇
  1927年   5篇
  1926年   4篇
  1924年   2篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
51.
52.
Functional implications of primate enamel thickness.   总被引:3,自引:0,他引:3  
Recent evolutionary interpretations of Hominoidea have postulated functional relationships between tooth form, diet and masticatory biomechanics. A major consideration is the durability of the tooth under certain dietary conditions. Teeth with low cusps and thicker enamel are able to withstand heavy mastication of abrasive food bolus for a longer period. When comparisons are made between species of higher primates the variables of tooth size, cusp morphology, and enamel thickness appear to be related but until now no systematic analysis has been made to determine the functional relevance of several dental dimensions. This study provides data gained from comparisons of dentition of nine species of primates. Histological sections were made of the post canine teeth and 21 dimensions were compared. The relevant dimensions identified serve to withstand dental wear. The distribution of thicker enamel corresponded to the observed wear planes. Humans had thicker enamel than pongids while the macaque had the thinnest. These preliminary results tend to support theories which explain low, thick, enameled cusps in hominids.  相似文献   
53.
Insect attraction to host plants may be partly mediated by visual stimuli. In the present study, the responses of adult Hycleus apicicornis (Guér.) (Coleoptera: Meloidae) to plant models of different colours, different combinations of two colours, or three hues of blue of different shapes are compared. Single‐colour models comprised the colours sky blue, bright green, yellow, red, white and black. Sky blue (reflecting light in the 440–500 nm region) is the most attractive, followed by white, which reflects light over a broader range (400–700 nm). On landing on sky blue targets, beetles exhibit feeding behaviour immediately. When different hues of blue (of different shapes) are compared, sky blue is preferred over turquoise, followed by dark blue, indicating that H. apicicornis is more attracted to lighter hues of blue than to darker ones. No significant differences are found between the three shapes (circle, square and triangle) tested, suggesting that reflectance associated with colour could be a more important visual cue than shape for host location by H. apicicornis. The preference of H. apicicornis for sky blue can be exploited in designing an attractive trap for its management.  相似文献   
54.
Serial sections of uncorticated axial cells of Compsopogon coeruleus revealed a single interconnected parietal chloroplast. Phycobilisomes in such chloroplasts were hemidiscoidal in shape with a broad-face diameter of ca. 25–30 nm. The molar ratio of phycobiliproteins in whole cell extracts was IPE:3PC:1APC, similar to isolated phycobilisomes. Two spectrally distinct C-phycocyanin forms (A618 nm, F648 nm and A630 nm, F652 nm) were resolved in dissociated phycobilisomes along with B-phycoerythrin and allophycocyanin.  相似文献   
55.
Most chloroplast and mitochondrial proteins are encoded by nuclear genes that once resided in the organellar genomes. Transfer of most of these genes appears to have occurred soon after the endosymbiotic origin of organelles, and so little is known about the process. Our efforts to understand how chloroplast genes are functionally transferred to the nuclear genome have led us to discover the most recent evolutionary gene transfer yet described. The gene rpl22, encoding chloroplast ribosomal protein CL22, is present in the chloroplast genome of all plants examined except legumes, while a functional copy of rpl22 is located in the nucleus of the legume pea. The nuclear rpl22 gene has acquired two additional domains relative to its chloroplast ancestor: an exon encoding a putative N-terminal transit peptide, followed by an intron which separates this first exon from the evolutionarily conserved, chloroplast-derived portion of the gene. This gene structure suggests that the transferred region may have acquired its transit peptide by a form of exon shuffling. Surprisingly, phylogenetic analysis shows that rpl22 was transferred to the nucleus in a common ancestor of all flowering plants, at least 100 million years preceding its loss from the legume chloroplast lineage.  相似文献   
56.
Amino acid incorporation into protein by chloroplasts from primary leaves of Phaseolus vulgaris L., var. Black Valentine is only partially inhibited by 400 μg/ml ribonuclease. The rate of incorporation, in the presence of ribonuclease, is progressively inhibited with time, and ceases after about half an hour. Preincubation of chloroplasts at 25°, in the absence of ribonuclease, increases the inhibitory effect of ribonuclease on the initial rate of incorporation of amino acid into protein. Examination of electron micrographs of freshly prepared chloroplast suspensions shows that chloroplasts are largely intact. However, after incubation at 25° for 1 hour the chloroplasts are disrupted, as indicated by loss of their stroma contents. It is concluded that the intact chloroplast membrane is relatively impermeable to ribonuclease. Amino acid incorporating activity probably becomes inhibited as the inside of the chloroplast is made accessible to ribonuclease by breakage of membranes during incubation at 25°.  相似文献   
57.
The photosystem II-phycobilisome preparation, isolated by lauryldimethyl amine oxide treatment, had a greatly reduced chlorophyll content, with an average ratio of 90 chlorophyll a/phycobilisome as compared to approximately 1200 Chl/phycobilisome in unfractionated thylakoids. P700 was not detected in the particles. By electron microscopy the preparations were relatively homogeneous and were generally devoid of chloroplast membranes. In negatively stained preparations phycobilisome particles were seen often in clusters of two and three, probably due to retention of hydrophobic thylakoid fragments. The preparation was deficient in photosystem I chlorophyll complexes, but enriched in polypeptides of 85 to 92, approximately 43, and approximately 26 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 43- and 26-kDa polypeptides are attributable to the PS II core and the oxygen-evolving complex, respectively.  相似文献   
58.
Control of nitrogen and carbon metabolism in root nodules   总被引:4,自引:0,他引:4  
Because legume root nodules have high rates of carbon and nitrogen metabolism, they are ideal for the study of plant physiology, biochemistry and molecular biology. Many plant enzymes involved in carbon and nitrogen assimilation have enhanced activity and enzyme protein in nodules as compared to other plant organs. For all intents and purposes the interior of the root nodule is O2 limited. Both plant and bacterial components of effective root nodules have unique adaptive features for maximizing carbon and nitrogen metabolism in an O2-limited environment. Plant glycolysis appears to be shunted to malic acid synthesis with further reductive synthesis to fumarate and succinate. Nodule bacteroids utilize these organic acids for the energy to fuel nitrogenase activity. Activities of the plant enzymes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), malate dehydrogenase (MDH, EC 1.1.1.37) and aspartate aminotransferase (AAT, EC 2.6.1.1), which are very high in nodules, may mediate the flux of carbon between organic and amino acid pools. Dark CO2 fixation via nodule PEPC can provide up to 25% of the carbon needed for malate and aspartate synthesis. At least three of the plant proteins showing enhanced expression in root nodules are O2 regulated. Isolation of alfalfa cDNAs encoding PEPC, AAT, NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) and aldolase (EC 4.1.2.13) will offer new tools to assess molecular events controlling nodule carbon and nitrogen metabolism.  相似文献   
59.
Abstract: Proteins in peripheral nervous system and central nervous system myelin and homogenates of sciatic nerve and brain from young and adult mice and rats were characterized with affinity-purified anti-P2 and anti-myelin basic protein sera after electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose sheets. Using this method we have identified a component of rodent peripheral nervous system myelin as P2 protein. Peripheral nervous system myelin also showed the presence of four basic proteins in addition to P2 protein. These were found to be analogous to the 14, 17, 18.5, and 21.5K species found in the central nervous system myelin. A number of high-molecular-weight proteins were also detected with anti-myelin basic protein serum in peripheral nervous system, as well as central nervous system myelin. In addition, we report the presence of a high-molecular-weight P2 cross-reactive protein in rodent brain stem homogenates, but not in central nervous system myelin.  相似文献   
60.
Flowers of the genus Arum are known to attract dung‐breeding flies and beetles through olfactory deceit. In addition to this strategy, the genus has evolved several other pollination mechanisms. The present study aimed to characterize the pollination strategies of the Cretan Arum species by investigating the flowering phenology, thermogeny, inflorescence odours, and the pollinating fauna. The results obtained show that Arum cyrenaicum and Arum concinnatum emit a strong dung smell and exhibit the distinctive features associated with this pollination syndrome. Both species are highly thermogenic, have a similar odour profile and attract small‐bodied Diptera. Although sharing the same habitat, these two plant species are never found growing sympatrically as a result of the early blooming period of A. cyrenaicum. By contrast, Arum creticum and Arum idaeum have evolved a more traditional and mutually beneficial pollination mechanism. The stinking smell has been replaced by a more flower‐like odour that attracts bees (Lasioglossum sp.) and, occasionally, bugs (Dionconotus cruentatus). Although attracting the same pollinator, the main compound present in the odour of A. creticum is different from that of A. idaeum. Principal component analysis (PCA), based on physiologically active components of the flower odours determined by testing on the antenna of the Lasioglossum bee, revealed two different clusters, indicating that pollinators can potentially discriminate between the odours of the two species. A further PCA on the main floral odour volatiles as identified by gas chroatography‐mass spectroscopy from all the Arum species under investigation displayed odour‐based similarities and differences among the species. The PCA‐gas chomotography‐electroantennographic detection active peaks analysis showed that the two species, A. creticum and A. idaeum, form two groups and are clearly separated from A. cyrenaicum and A. concinnatum, which, conversely, cluster together. The evolutionary forces and selective pressures leading to diversification of pollination mechanisms in the Cretan Arum spp. are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 991–1001.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号