首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   5篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   10篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
51.
52.
Lysophosphatidic acid (LPA), lyso-phosphatidylcholine (LPC), and sphingosine-1-phosphate (S1P) are major biologically active lysophospholipids (LPLs) that are produced by activated platelets, monocyte/macrophages, and many types of mammalian cells. LPLs have been shown to induce a wide array of physiological and pathophysiological properties including cellular differentiation, proliferation, migration, extracellular matrix deposition, change in morphology, and chemotactic responses. The recent cloning and identification of G protein-coupled receptors as specific receptors for LPLs created a great deal of interest in LPLs signaling and diverse biological responses. The pathobiological role of LPLs has been implicated in a number of pathological states and human diseases including atherosclerosis, glomerulosclerosis, post-ischemic renal failure, polycystic kidney disease, and ovarian cancer. Although the research in this area is growing at an enormous rate, this review is specifically focused on the recent understanding of the pathophysiological properties of LPA and LPC with special reference to kidney diseases, and their specific G-protein-coupled receptors and intracellular signaling pathways.  相似文献   
53.

Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0–2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (≤ 97.01%), digital DNA–DNA hybridization (≤ 32.7%), OrthoANI (≤ 87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by β-galactosidase and β-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (= CGMCC 1.13590T = KCTC XXX).

  相似文献   
54.
55.
The electronic transport properties in B24N24 nanocage are studied with a combination of the density functional theory and non-equilibrium Green's function scheme. Various configurations of the molecular conductor sandwiched between two gold electrodes have been considered. The results show that when the boron nitride nanocage is oriented with its main symmetry axis being parallel to the transport direction in device, the conductance is larger than in the case with the perpendicular axis orientation. However, a small conductance was observed for both the considered orientations. The obtained results are rationalised by analysing the transmission coefficients at different bias voltages as well as at the projection of the density of states for the molecular orbitals.  相似文献   
56.
The lipoglycoproteins of the WNT family act on seven transmembrane-spanning Class Frizzled receptors. Here, we show that WNT-5A evokes a proliferative response in a mouse microglia-like cell line (N13), which is sensitive to pertussis toxin, thus implicating the involvement of heterotrimeric G proteins of the Gi/o family. We continue to show that WNT-5A stimulation of N13 membranes and permeabilized cells evokes the exchange of GDP for GTP of pertussis toxin-sensitive G proteins employing [γ-35S]GTP assay and activity state-specific antibodies to GTP-bound Gi proteins. Our functional analysis of the PTX-sensitivity of WNT-induced G protein activation and PCR analysis of G protein and FZD expression patterns suggest that WNT-5A stimulation leads to the activation of Gi2/3 proteins in N13 cells possibly mediated by FZD5, the predominant FZD expressed. In summary, we provide for the first time molecular proof that WNT-5A stimulation results in the activation of heterotrimeric Gi2/3 proteins in mammalian cells with physiological protein stochiometry.  相似文献   
57.
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.  相似文献   
58.
Escherichia coli aminopeptidase N (ePepN) belongs to the gluzincin family of M1 class metalloproteases that share a common primary structure with consensus zinc binding motif (HEXXH-(X18)-E) and an exopeptidase motif (GXMEN) in the active site. There is one amino acid, E121 in Domain I that blocks the extended active site grove of the thermolysin like catalytic domain (Domain II) limiting the substrate to S1 pocket. E121 forms a part of the S1 pocket, while making critical contact with the amino-terminus of the substrate. In addition, the carboxylate of E121 forms a salt bridge with K319 in Domain II. Both these residues are absolutely conserved in ePepN homologs. Analogous Glu-Asn pair in tricon interacting factor F3 (F3) and Gln-Asn pair in human leukotriene A(4) hydrolase (LTA(4) H) are also conserved in respective homologs. Mutation of either of these residues individually or together substantially reduced or entirely eliminated enzymatic activity. In addition, thermal denaturation studies suggest that the mutation at K319 destabilizes the protein as much as by 3.7 °C, while E121 mutants were insensitive. Crystal structure of E121Q mutant reveals that the enzyme is inactive due to the reduced S1 subsite volume. Together, data presented here suggests that ePepN, F3, and LTA(4) H homologs adopted a divergent evolution that includes E121-K319 or its analogous pairs, and these cannot be interchanged.  相似文献   
59.
Environmental mycobacteria, highly prevalent in natural and artificial (including chlorinated municipal water) niches, are emerging as new threat to human health, especially to HIV‐infected population. These seemingly harmless non‐pathogenic mycobacteria, which are otherwise cleared, establish as opportunistic infections adding to HIV‐associated complications. Although immune‐evading strategies of pathogenic mycobacteria are known, the mechanisms underlying the early events by which opportunistic mycobacteria establish infection in macrophages and influencing HIV infection are unclear. Proteomics of phagosome‐enriched fractions from Mycobacterium bovis Bacillus Calmette–Guérin (BCG) mono‐infected and HIV–M. bovis BCG co‐infected THP‐1 cells by LC‐MALDI‐MS/MS revealed differential distribution of 260 proteins. Validation of the proteomics data showed that HIV co‐infection helped the survival of non‐pathogenic mycobacteria by obstructing phagosome maturation, promoting lipid biogenesis and increasing intracellular ATP equivalents. In turn, mycobacterial co‐infection up‐regulated purinergic receptors in macrophages that are known to support HIV entry, explaining increased viral titers during co‐infection. The mutualism was reconfirmed using clinically relevant opportunistic mycobacteria, Mycobacterium avium, Mycobacterium kansasii and Mycobacterium phlei that exhibited increased survival during co‐infection, together with increase in HIV titers. Additionally, the catalogued proteins in the study provide new leads that will significantly add to the understanding of the biology of opportunistic mycobacteria and HIV coalition.  相似文献   
60.
Background: A complex of genetic and environmental factors is involved in carcinogenesis of the esophageal squamous cell carcinoma (ESCC). Glutathione-S-Transferases (GSTs) are phase-II enzymes playing role in detoxification of carcinogen electrophiles. Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 in association with some environmental factors and their impact on esophageal cancer susceptibility were assessed in the Iranian population. Methods: Genomic DNA of peripheral blood leukocytes from 148 confirmed esophageal cancer cases and 137 healthy individuals as control group was assayed for restriction fragment length polymorphisms in the GSTP1 loci by PCR amplification followed by digestion with Alw26I. Deletion of the GSTM1 and GSTT1 genes was detected by multiplex PCR. A data-mining method based on decision trees was applied to produce a predictive model of interactions between genotypes. Results: Smoking was independently associated with ESCC (p < 0.05, OR: 2.286, 95% CI = 1.311–3.983). Smoking along with GSTP1 Val/Val genotype was associated to ESCC (p < 0.001, OR: 3.886, 95% CI = 1.830–8.251), while non-smokers with GSTP1 Val/Val were significantly more frequent in non-cancerous group. (p = 0.007, OR: 0.507, 95% CI = 0.309–0.830). Conclusions: Data-mining methods are useful tools to map out a scheme for predicting complex relations and combinations of different genotypes. Genotyping analysis of GSTP1 together with assessment of smoking seems to be important in determining the risk of ESCC in the Iranian population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号