首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76158篇
  免费   5546篇
  国内免费   4854篇
  86558篇
  2024年   154篇
  2023年   1033篇
  2022年   2393篇
  2021年   4072篇
  2020年   2617篇
  2019年   3231篇
  2018年   3166篇
  2017年   2297篇
  2016年   3256篇
  2015年   4808篇
  2014年   5544篇
  2013年   5983篇
  2012年   7022篇
  2011年   6155篇
  2010年   3710篇
  2009年   3333篇
  2008年   3723篇
  2007年   3354篇
  2006年   2906篇
  2005年   2380篇
  2004年   1958篇
  2003年   1653篇
  2002年   1399篇
  2001年   1230篇
  2000年   1218篇
  1999年   1121篇
  1998年   661篇
  1997年   655篇
  1996年   666篇
  1995年   616篇
  1994年   543篇
  1993年   376篇
  1992年   568篇
  1991年   435篇
  1990年   406篇
  1989年   282篇
  1988年   244篇
  1987年   234篇
  1986年   166篇
  1985年   193篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.  相似文献   
992.
It remains unclear whether the necessity of calcified mellitus induced by high inorganic phosphate (Pi) is required and the roles of autophagy plays in aldosterone (Aldo)‐enhanced vascular calcification (VC) and vascular smooth muscle cell (VSMC) osteogenic differentiation. In the present study, we found that Aldo enhanced VC both in vivo and in vitro only in the presence of high Pi, alongside with increased expression of VSMC osteogenic proteins (BMP2, Runx2 and OCN) and decreased expression of VSMC contractile proteins (α‐SMA, SM22α and smoothelin). However, these effects were blocked by mineralocorticoid receptor inhibitor, spironolactone. In addition, the stimulatory effects of Aldo on VSMC calcification were further accelerated by the autophagy inhibitor, 3‐MA, and were counteracted by the autophagy inducer, rapamycin. Moreover, inhibiting adenosine monophosphate‐activated protein kinase (AMPK) by Compound C attenuated Aldo/MR‐enhanced VC. These results suggested that Aldo facilitates high Pi‐induced VSMC osteogenic phenotypic switch and calcification through MR‐mediated signalling pathways that involve AMPK‐dependent autophagy, which provided new insights into Aldo excess‐associated VC in various settings.  相似文献   
993.
Primary biliary cholangitis (PBC) is an autoimmune disease characterized by chronic destruction of the bile ducts. A major unanswered question regarding the pathogenesis of PBC is the precise mechanisms of small bile duct injury. Emperipolesis is one of cell‐in‐cell structures that is a potential histological hallmark associated with chronic hepatitis B. This study aimed to clarify the pathogenesis and characteristics of emperipolesis in PBC liver injury. Sixty‐six PBC patients, diagnosed by liver biopsy combined with laboratory test, were divided into early‐stage PBC (stages I and II, n = 39) and late‐stage PBC (stages III and IV, n = 27). Emperipolesis was measured in liver sections stained with haematoxylin‐eosin. The expressions of CK19, CD3, CD4, CD8, CD20, Ki67 and apoptosis of BECs were evaluated by immunohistochemistry or immunofluorescence double labelling. Emperipolesis was observed in 62.1% of patients with PBC, and BECs were predominantly host cells. The number of infiltrating CD3+ and CD8+ T cells correlated with the advancement of emperipolesis (R2 = 0.318, P < .001; R2 = 0.060, P < .05). The cell numbers of TUNEL‐positive BECs and double staining for CK19 and Ki67 showed a significant positive correlation with emperipolesis degree (R2 = 0.236, P < .001; R2 = 0.267, P < .001). We conclude that emperipolesis mediated by CD8+ T cells appears to be relevant to apoptosis of BEC and thus may aggravate the further injury of interlobular bile ducts.  相似文献   
994.
995.
Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti-cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL-induced osteoclast formation and resorbed pits of hydroxyapatite-coated plate in a dose-dependent manner. D.P also disrupted the formation of intact actin-rich podosome structures in mature osteoclasts and inhibited osteoclast-specific gene and protein expressions. Further, D.P was able to suppress RANKL-activated JNK, NF-κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast-related conditions.  相似文献   
996.
Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple‐negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi‐omic data showed that ERK1/c‐MYC axis was identified as a major pivot in PRKD3‐mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c‐MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c‐MYC but did not down‐regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c‐MYC phosphorylation further led to the lower protein level of c‐MYC and then reduced the expression of the c‐MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c‐MYC in the PRKD3‐knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1‐c‐MYC axis.  相似文献   
997.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   
998.
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM.  相似文献   
999.
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degradation, in which elevated chondrocyte apoptosis and catabolic activity play an important role. MicroRNA‐155 (miR‐155) has recently been shown to regulate apoptosis and catabolic activity in some pathological circumstances, yet, whether and how miR‐155 is associated with OA pathology remain unexplored. We report here that miR‐155 level is significantly up‐regulated in human OA cartilage biopsies and also in primary chondrocytes stimulated by interleukin‐1β (IL‐1β), a pivotal pro‐catabolic factor promoting cartilage degradation. Moreover, miR‐155 inhibition attenuates and its overexpression promotes IL‐1β‐induced apoptosis and catabolic activity in chondrocytes in vitro. We also demonstrate that the PIK3R1 (p85α regulatory subunit of phosphoinositide 3‐kinase (PI3K)) is a target of miR‐155 in chondrocytes, and more importantly, PIK3R1 restoration abrogates miR‐155 effects on chondrocyte apoptosis and catabolic activity. Mechanistically, PIK3R1 positively regulates the transduction of PI3K/Akt pathway, and a specific Akt inhibitor reverses miR‐155 effects on promoting chondrocyte apoptosis and catabolic activity, phenocopying the results obtained via PIK3R1 knockdown, hence establishing that miR‐155 promotes chondrocyte apoptosis and catabolic activity through targeting PIK3R1‐mediated PI3K/Akt pathway activation. Altogether, our study discovers novel roles and mechanisms of miR‐155 in regulating chondrocyte apoptosis and catabolic activity, providing an implication for therapeutically intervening cartilage degradation and OA progression.  相似文献   
1000.
Characteristic pathological changes in osteonecrosis of the femoral head (ONFH) include reduced osteogenic differentiation of bone mesenchymal stem cells (BMSCs), impaired osseous circulation and increased intramedullary adipocytes deposition. Osthole is a bioactive derivative from coumarin with a wide range of pharmacotherapeutic effects. The aim of this study was to unveil the potential protective role of osthole in alcohol‐induced ONFH. In vitro, ethanol (50 mmol/L) remarkably decreased the proliferation and osteogenic differentiation of BMSCs and impaired the proliferation and tube formation capacity of human umbilical vein endothelial cell (HUVECs), whereas it substantially promoted the adipogenic differentiation of BMSCs. However, osthole could reverse the effects of ethanol on osteogenesis via modulating Wnt/β‐catenin pathway, stimulate vasculogenesis and counteract adipogenesis. In vivo, the protective role of osthole was confirmed in the well‐constructed rat model of ethanol‐induced ONFH, demonstrated by a cascade of radiographical and pathological investigations including micro‐CT scanning, haematoxylin‐eosin staining, TdT‐mediated dUTP nick end labelling, immunohistochemical staining and fluorochrome labelling. Taken together, for the first time, osthole was demonstrated to rescue the ethanol‐induced ONFH via promoting bone formation, driving vascularization and retarding adipogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号