全文获取类型
收费全文 | 14999篇 |
免费 | 1149篇 |
国内免费 | 1124篇 |
专业分类
17272篇 |
出版年
2024年 | 32篇 |
2023年 | 180篇 |
2022年 | 455篇 |
2021年 | 826篇 |
2020年 | 488篇 |
2019年 | 595篇 |
2018年 | 625篇 |
2017年 | 525篇 |
2016年 | 622篇 |
2015年 | 894篇 |
2014年 | 1071篇 |
2013年 | 1201篇 |
2012年 | 1398篇 |
2011年 | 1253篇 |
2010年 | 774篇 |
2009年 | 683篇 |
2008年 | 751篇 |
2007年 | 624篇 |
2006年 | 605篇 |
2005年 | 486篇 |
2004年 | 430篇 |
2003年 | 331篇 |
2002年 | 344篇 |
2001年 | 312篇 |
2000年 | 254篇 |
1999年 | 249篇 |
1998年 | 165篇 |
1997年 | 130篇 |
1996年 | 133篇 |
1995年 | 125篇 |
1994年 | 138篇 |
1993年 | 92篇 |
1992年 | 96篇 |
1991年 | 70篇 |
1990年 | 66篇 |
1989年 | 58篇 |
1988年 | 56篇 |
1987年 | 31篇 |
1986年 | 33篇 |
1985年 | 19篇 |
1984年 | 23篇 |
1983年 | 12篇 |
1982年 | 8篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1933年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [14C]linoleoyl-CoA and [14C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.Key words: acyl-CoA-binding protein, cadmium, hydrogen peroxide, lysophospholipase, oxidative stressAcyl-CoA-binding proteins (ACBP1 to ACBP6) are encoded by a multigene family in Arabidopsis thaliana.1 These ACBP proteins are well studied in Arabidopsis in comparison to other organisms,1–4 and are located in various subcellular compartments.1 Plasma membranelocalized ACBP1 and ACBP2 contain ankyrin repeats that have been shown to function in protein-protein interactions.5,6 ACBP1 and ACBP2 which share 76.9% amino acid identity also confer tolerance in transgenic Arabidopsis to lead [Pb(II)] and Cd(II), respectively.1,5,7 Since recombinant ACBP1 and ACBP2 bind linolenoyl-CoA and linoleoyl-CoA in vitro, they may possibly be involved in phospholipid repair in response to heavy metal stress at the plasma membrane.5,7 In contrast, ACBP3 is an extracellularly-localized protein8 while ACBP4, ACBP5 and ACBP6 are localized to cytosol.9,10 ACBP1 and ACBP6 have recently been shown to be involved in freezing stress.9,11 ACBP4 and ACBP5 bind oleoyl-CoA ester and their mRNA expressions are lightregulated.12,13 Besides acyl-CoA esters, some ACBPs also bind phospholipids.9,11,13 To investigate the biological function of ACBP2, we have proceeded to establish its interactors at the ankyrin repeats, including AtFP6,5 AtEBP6 and now lysoPL2 in the Plant Journal paper. While the significance in the interaction of ACBP2 with AtEBP awaits further investigations, some parallels can be drawn between those of ACBP2 with AtFP6 and with lysoPL2. 相似文献
992.
993.
994.
995.
芥菜型油菜抗虫转基因植株及其后代株系的研究 总被引:10,自引:0,他引:10
带有1 ~2 m m 子叶柄的芥菜型油菜子叶经农杆菌感染后,培养在附加10 ~20 mg/ L卡那霉素的 M S 选择培养基上筛选转化愈伤组织及不定芽。卡那霉素抗性苗相继在含30 ~50 m g/ L 卡那霉素的选择培养基上继代培养,再转移到含20 mg/ L 卡那霉素的生根培养基上诱导生根。以苏云金杆菌杀虫晶体蛋白基因为探针,进行 Southern blot 分子杂交,得到阳性结果。 P C R 分析也证明外源基因整合到油菜基因组并稳定传递到后代。转基因植株的抗虫性和卡那霉素抗性在自交后代中得到保持,筛选得到纯合的转基因植株后代株系 相似文献
996.
Xiaohui Chen Fusheng Jiang Ningchuan Shi Hui Zhou Liang Zhang Yu Chen Yanhua Zheng Tian Guo Yan 《Cell biochemistry and biophysics》2014,69(3):567-571
To test the possible association between reversion-inducing cysteine-rich protein with Kazal motifs (RECK) genetic variants and susceptibility as well as the chemotherapy response status to in patients with advanced non-small cell lung cancer (NSCLC). We recruited 304 patients who were histologically diagnosed as advanced NSCLC (IIIa, IIIb, and IV stage) in our hospital from September 2003 to January 2008. We also enrolled 409 sex- and age-matched healthy volunteers as controls. RECK Gene Polymorphisms were determined. Only the genotype distributions and allele frequencies of rs10814325 T>C were significantly different between NSCLC and controls (both P < 0.001). By multivariate analyses, markedly higher risk for NSCLC was observed in rs10814325 CC genotype (adjusted OR = 2.302, P = 0.012, with TT as reference) after adjustment with age, sex, smoking status, histology, differentiation, and stage. Haplotypes analyses showed that the Ars11788747-Grs16932912-Crs10814325 and Ars11788747-Ars16932912A-Crs10814325 were associated with higher risk for NSCLC; however, Grs11788747-Grs16932912-Trs10814325 and Grs11788747-Ars16932912-Trs10814325 haplotypes showed significantly protective roles in the NSCLC risk. The genotype and the allele frequencies of RECK gene were not significantly different between chemotherapy responder and non-responders. Multivariate logistic regression analysis showed no association between the RECK polymorphism and chemotherapy response status in this study. To the best of our knowledge, this is the first study documenting the etiological role of RECK genetic polymorphisms in NSCLC. 相似文献
997.
Progenies of Oryza sativa cv. Nipponbare induced with 0.4% ethyl methane sulphonate (EMS) were screened for quality mutants and the preliminary quality mutant population was constructed in present experiment. A total of 2210 materials were first screened using near infrared reflectance spectroscopy (NIRS) from which 208 quality mutants were obtained for a second screening and then yielded 73 quality mutants including amylase content (AC), gel consistency (GC), gelatinization temperature (GT), protein content (PC), rapid viscosity analysis (RVA) parameters and amino acid contents. The screening yielded 11 PC mutants with a mutation frequency of 4.98??, followed by 7 rice floury viscosity mutants (3.17??), 5 AC mutants (2.26??), 4 chalky mutants, GT and GC mutants (1.81??), and 2 ASV mutants (0.9??). The relative contents of 17 kinds of amino acid mutations, including 7 kinds for essential amino acids and 10 kinds for nonessential amino acids were identified. With the variation of 10% as the screening standard, mutants were obtained for lysine and leucine at 0.45?? and for valine at 4.98??, but no mutants were found for isoleucine, phenylalanine, threonine. For nonessential amino acids, mutants of glutamic (0.45??), arginine (3.62??), alanine (3.17??), serine (0.45??), glycine (0.45??), tyrosine (1.81??), proline (2.71??), and histidine (0.45??) were obtained, but none was found for aspartic, phenylalanine nor threonine. At 100% as the screening standard for methionine and cysteines, the mutation frequency of these two amino acid mutants were 0.9?? and 4.98?? respectively. Quality mutants in this preliminary library of rice could play important role in gene function and breeding of rice quality. 相似文献
998.
Jiaying Xu Hongbo Shi Magaye Ruth Hongsheng Yu Lissy Lazar Baobo Zou Cui Yang Aiguo Wu Jinshun Zhao 《PloS one》2013,8(8)
Background
With a wide range of applications, titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities. Recently, in the field of nanomedicine, intravenous injection of TiO2 nanoparticulate carriers directly into the bloodstream has raised public concerns on their toxicity to humans.Methods
In this study, mice were injected intravenously with a single dose of TiO2 NPs at varying dose levels (0, 140, 300, 645, or 1387 mg/kg). Animal mortality, blood biochemistry, hematology, genotoxicity and histopathology were investigated 14 days after treatment.Results
Death of mice in the highest dose (1387 mg/kg) group was observed at day two after TiO2 NPs injection. At day 7, acute toxicity symptoms, such as decreased physical activity and decreased intake of food and water, were observed in the highest dose group. Hematological analysis and the micronucleus test showed no significant acute hematological or genetic toxicity except an increase in the white blood cell (WBC) count among mice 645 mg/kg dose group. However, the spleen of the mice showed significantly higher tissue weight/body weight (BW) coefficients, and lower liver and kidney coefficients in the TiO2 NPs treated mice compared to control. The biochemical parameters and histological tissue sections indicated that TiO2 NPs treatment could induce different degrees of damage in the brain, lung, spleen, liver and kidneys. However, no pathological effects were observed in the heart in TiO2 NPs treated mice.Conclusions
Intravenous injection of TiO2 NPs at high doses in mice could cause acute toxicity effects in the brain, lung, spleen, liver, and kidney. No significant hematological or genetic toxicity was observed. 相似文献999.
Abi-Antoun T Shi S Tolino LA Kleyman TR Carattino MD 《American journal of physiology. Renal physiology》2011,300(5):F1089-F1095
Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We investigated the response of δβγ channels to LSS. Both the time course and magnitude of activation of δβγ channels by LSS were remarkably different from those of αβγ channels. ENaC subunits have similar topology, with an extracellular region connected by two transmembrane domains with intracellular N and C termini. To identify the specific domains that are responsible for the differences in the response to flow of αβγ and δβγ channels, we generated a series of α-δ chimeras and site-specific α-subunit mutants and examined parameters of activation by LSS. We found that specific sites in the region encompassing and just preceding the second transmembrane domain were responsible for the differences in the magnitude and time course of channel activation by LSS. 相似文献
1000.
Jia Li Tian Yu Fu Shi Yu Zhang Zikun Duan Bao Fu Yi Zhang 《Neurochemical research》2018,43(4):838-847
It has been reported that central dopaminergic system is implicated in the mechanism underlying general anesthesia. Whether dopamine (DA) neurons in midbrain ventral periaqueductal gray (vPAG) are involved in general anesthesia and how general anesthetics affect these neurons remain sparsely documented. To determine the role of vPAG DA neurons in propofol-induced anesthesia, we performed microinjection of 6-hydroxydopamine (6-OHDA) into vPAG to damage DA neurons and investigated the alteration in somatosensory electroencephalogram (EEG), as well as the induction and recovery time of propofol anesthesia. Subsequently, we examined the effect of propofol on the electrophysiological activity of DA neurons in vPAG using whole-cell patch clamp. Two weeks after 6-OHDA microinfusion, DA neurons in the vPAG were markedly reduced by 63.6% in the 6-OHDA-treated rats compared with vehicle rats. This lesion significantly shortened the induction time (7.15?±?3.97 s vs. 11.18?±?2.83 s, P?<?0.05) and prolonged the recovery time of propofol anesthesia (780.26?±?150.86 s vs. 590.68?±?107.97 s, P?<?0.05). Meanwhile, EEG in somatosensory cortex revealed that delta power (0–4 Hz) was significantly higher in 6-OHDA-treated rats than vehicle rats. In the electrophysiological experiment, propofol decreased the frequency of spontaneous excitatory postsynaptic currents rather than the amplitude and decay time. In addition, propofol preferentially increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents without affecting the amplitude. Significance: Propofol can promote presynaptic GABA release, inhibit presynaptic glutamate release and increase postsynaptic GABAA receptor sensitivity, which eventually inhibits the activity of vPAG DA neurons and thereby influences the state of consciousness. 相似文献