首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   5篇
  2023年   3篇
  2022年   5篇
  2021年   5篇
  2020年   9篇
  2019年   10篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   9篇
  2014年   7篇
  2013年   19篇
  2012年   23篇
  2011年   13篇
  2010年   11篇
  2009年   8篇
  2008年   13篇
  2007年   14篇
  2006年   15篇
  2005年   13篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
101.
DNA protection during starvation (Dps) proteins play an important role in protecting cellular macromolecules from damage by reactive oxygen species (ROS). Unlike most orthologs that protect DNA by a combination of DNA binding and prevention of hydroxyl radical formation by ferroxidation and sequestration of iron, Dps-1 from the radiation-resistant Deinococcus radiodurans fails to protect DNA from hydroxyl radical-mediated cleavage through a mechanism inferred to involve continuous release of iron from the protein core. To address the structural basis for this unusual release of Fe(2+), the crystal structure of D. radiodurans Dps-1 was determined to 2.0 Angstroms resolution. Two of four strong anomalous signals per protein subunit correspond to metal-binding sites within an iron-uptake channel and a ferroxidase site, common features related to the canonical functions of Dps homologs. Similar to Lactobacillus lactis Dps, a metal-binding site is found at the N-terminal region. Unlike other metal sites, this site is located at the base of an N-terminal coil on the outer surface of the dodecameric protein sphere and does not involve symmetric association of protein subunits. Intriguingly, a unique channel-like structure is seen featuring a fourth metal coordination site that results from 3-fold symmetrical association of protein subunits through alpha2 helices. The presence of this metal-binding site suggests that it may define an iron-exit channel responsible for the continuous release of iron from the protein core. This interpretation is supported by substitution of residues involved in this ion coordination and the observation that the resultant mutant protein exhibits significantly attenuated iron release. Therefore, we propose that D. radiodurans Dps-1 has a distinct iron-exit channel.  相似文献   
102.
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.  相似文献   
103.
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin–integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin–integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-κB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.  相似文献   
104.
105.
106.
Recent advances in genomic and post-genomic technologies have provided the opportu- nity to generate a previously unimaginable amount of information. However, biological knowledge is still needed to improve the understanding of complex mechanisms such as plant immune responses. Better knowledge of this process could improve crop production and management. Here, we used holistic analysis to combine our own microarray and RNA-seq data with public genomic data from Arabidopsis and cassava in order to acquire biological knowledge about the relationships between proteins encoded by immunity-related genes (IRGs) and other genes. This approach was based on a kernel method adapted for the construction of gene networks. The obtained results allowed us to propose a list of new IRGs. A putative function in the immunity pathway was predicted for the new IRGs. The analysis of networks revealed that our predicted IRGs are either well documented or recognized in previous co-expression studies. In addition to robust relationships between IRGs, there is evidence suggesting that other cellular processes may be also strongly related to immunity.  相似文献   
107.
Recent advancements in isolation techniques for cytochrome c (Cytc) have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.  相似文献   
108.
109.
This article revisits recent debates about the responsibilities of public scholarship. The piece argues that writing in a range of fields has engaged with issues of racism, in particular as racism has been manifested in the ‘war on terror’, but that this discussion has been muted within the sub-field of race and ethnic studies. There is a discussion of the impact of pressures to demonstrate the ‘usefulness’ of research to a wider public and the limits that this can place on the formulation of research. This argument is expanded through consideration of the author's experience of researching and lobbying with community and campaigning groups. The piece goes on to consider the implications of the marketization of higher education for critical scholarship and concludes that there is value in a more ‘private’ sociology that may not be easily accommodated in the marketized university.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号