首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5466篇
  免费   556篇
  国内免费   1059篇
  2024年   24篇
  2023年   57篇
  2022年   153篇
  2021年   263篇
  2020年   206篇
  2019年   250篇
  2018年   225篇
  2017年   174篇
  2016年   275篇
  2015年   358篇
  2014年   475篇
  2013年   472篇
  2012年   595篇
  2011年   491篇
  2010年   364篇
  2009年   344篇
  2008年   376篇
  2007年   377篇
  2006年   287篇
  2005年   256篇
  2004年   226篇
  2003年   182篇
  2002年   160篇
  2001年   77篇
  2000年   62篇
  1999年   84篇
  1998年   62篇
  1997年   27篇
  1996年   32篇
  1995年   21篇
  1994年   24篇
  1993年   17篇
  1992年   16篇
  1991年   12篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1982年   5篇
  1981年   3篇
  1977年   2篇
  1972年   2篇
  1967年   1篇
  1961年   1篇
  1950年   4篇
  1925年   1篇
  1915年   1篇
排序方式: 共有7081条查询结果,搜索用时 46 毫秒
901.
研究了温度、水分和演替阶段及其交互作用对中亚热带丘陵红壤区森林土壤氮素矿化过程及其矿化速率的影响.结果表明:温度和演替阶段对土壤氨化速率影响显著,其中12 ℃<24℃<36 ℃,灌丛林和马尾松(Pinus massoniana)林低于常绿阔叶林(P<0.05);而水分的影响不显著.水分和演替阶段对土壤硝化速率有显著影响,土壤半饱和含水量高于自然含水量及饱和含水量,且马尾松林高于灌丛林(P<0.05);而温度的影响不显著.温度、水分和演替阶段对土壤氮净矿化速率的影响均显著,其中12 ℃<24 ℃<36 ℃,土壤半饱和含水量高于自然含水量和饱和含水量,灌丛林<马尾松林<常绿阔叶林(P<0.05).温度升高有利于提高土壤氨化速率和净矿化速率,温度过高则抑制土壤硝化速率;土壤含水量适中有利于土壤氮素矿化过程;顺行演替将提高土壤供氮能力,且抑制过强的硝化作用.  相似文献   
902.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   
903.
目的建立SPF级(屏障系统)封闭群SD大鼠血液生化及凝血酶原时间正常参考值,为药物长期毒性试验研究者提供参考。方法采用全自动血液生化分析仪检测19周和31周大鼠血液生化值,采用紫外可见分光光度计检测K+、Na+、Cl-值和凝血酶原时间值。结果取得19周和31周龄SD大鼠血清生化值和凝血酶原平均值。CR、TG、TC生化指标受年龄及性别因素影响,CR、TG、TC随年龄增长而逐步升高。TBIL、CR、TG、TC、CK、TP、BUN、ALB、AST、K+、ALP指标雌雄间差异显著(P&lt;0.05)。结论在药物长期毒性试验中,同一周龄雌、雄SD大鼠K+、Cl-、Na+、凝血酶原时间值可合并统计;雌、雄SD大鼠血液生化指标不宜合并统计。在比对正常参考值时应考虑到性别与年龄的因素。  相似文献   
904.
Genistein is a major isoflavonoid in dietary soybean, commonly consumed in Asia. Genistein exerts inhibitory effects on the proliferation of various cancer cells and plays an important role in cancer prevention. However, the molecular and cellular mechanisms of genistein on human ovarian cancer cells are still little known. We show that exposure of human ovarian cancer HO-8910 cells to genistein induces DNA damage, and triggers G2/M phase arrest and apoptosis. Furthermore, we also found that checkpoint proteins ATM and ATR are phosphorylated and activated in the cells treated with genistein. It is also shown that genistein increases the phosphorylation and activation of Chk1 and Chk2, which results in the phosphorylation and inactivation of phosphatases Cdc25C and Cdc25A, and thereby the phosphorylation and inactivation of Cdc2 which arrests cells in G2/M phase. Moreover, genistein enhances the phosphorylation and activation of p53, while decreases the ratio of Bcl-2/Bax and Bcl-xL/Bax and the level of phosphorylated Akt, which result in cells undergoing apoptosis. These results demonstrate that genistein-activated ATM-Chk2-Cdc25 and ATR-Chk1-Cdc25 DNA damage checkpoint pathways can arrest ovarian cancer cells in G2/M phase, and induce apoptosis while the cellular DNA damage is too serious to be repaired. Thus, the antiproliferative, DNA damage-inducing and pro-apoptotic activities of genistein are probably responsible for its genotoxic effects on human ovarian cancer HO-8910 cells.  相似文献   
905.
906.
907.
The digestive enzyme chitinase degrades chitin, and is found in a wide range of organisms, from prokaryotes to eukaryotes. Although mammals cannot synthesize or assimilate chitin, several proteins of the glycoside hydrolase (GH) chitinase family GH18, including some with enzymatic activity, have recently been identified from mammalian genomes. Consequently, there is growing interest in molecular evolution of this family of proteins. Here we report on the use of maximum likelihood methods to test for evidence of positive selection in three genes of the chitinase family GH18, all of which are found in mammals. These focal genes are CHIA, CHIT1 and CHI3L1, which encode the chitinase proteins acidic mammalian chitinase, chitotriosidase and cartilage protein 39, respectively. The results of our analyses indicate that each of these genes has undergone independent selective pressure in their evolution. Additionally, we have found evidence of a signature of positive natural selection, with most sites identified as being subject to adaptive evolution located in the catalytic domain. Our results suggest that positive selection on these genes stems from their function in digestion and/or immunity.  相似文献   
908.
Two populations of Przewalski's naked carp Gymnocypris przewalskii, 30 individuals per population, were screened for 10 microsatellite loci. Moderate allele variation was found in these loci with two to eight alleles per locus. The expected and observed heterozygosity ranged from 0·019 to 0·805 and from 0·160 to 0·575, respectively.  相似文献   
909.
Influenza is an acute respiratory viral disease that is transmitted in the first few days of infection. Evasion of host innate immune defenses, including natural killer (NK) cells, is important for the virus''s success as a pathogen of humans and other animals. NK cells encounter influenza viruses within the microenvironment of infected cells and are important for host innate immunity during influenza virus infection. It is therefore important to investigate the direct effects of influenza virus on NK cells. In this study, we demonstrated for the first time that influenza virus directly infects and replicates in primary human NK cells. Viral entry into NK cells was mediated by both clathrin- and caveolin-dependent endocytosis rather than through macropinocytosis and was dependent on the sialic acids on cell surfaces. In addition, influenza virus infection induced a marked apoptosis of NK cells. Our findings suggest that influenza virus can directly target and kill NK cells, a potential novel strategy of influenza virus to evade the NK cell innate immune defense that is likely to facilitate viral transmission and may also contribute to virus pathogenesis.Influenza is an acute respiratory virus infection that continues to pose endemic, zoonotic, and pandemic threats to human health, with significant morbidity and mortality (17). At the early phase of viral infection, innate immunity plays important roles in host defense by limiting viral replication and helping to initiate an adaptive immune response. Natural killer (NK) cells are key effector cells in innate immunity and play a critical role in the first line of host defense against acute viral infections by directly destroying infected cells without the need for prior antigen stimulation (7, 20). As influenza illness and virus transmission usually occur in the first few days of infection, the virus has to devise strategies to evade host innate immune responses, including NK cell immunity (15, 21).NK cells can recognize and kill influenza virus-infected cells (2, 10, 23); to counteract this killing, however, influenza virus has developed an escape strategy that inhibits NK cell cytotoxicity by increasing the binding of two inhibitory receptors to the infected cells after infection (1). The individuals with complete NK cell deficiency developed life-threatening varicella zoster virus and cytomegalovirus infection, but no severe influenza virus infection occurred (30, 40). Indeed, the interaction between human NK cells and influenza virus remains poorly understood. After influenza virus infection, respiratory epithelial cells release inflammatory chemokines that recruit NK cells to the site of infection (12). As a lytic virus, numerous influenza virus particles are released from the infected epithelia and macrophages (5, 9, 33). In the infected microenvironment, NK cells undoubtedly encounter these infective virus particles. It is therefore important to investigate the direct interaction of NK cells with influenza virus. Patients with severe influenza virus infection were shown to have diminished NK cells in peripheral blood and an almost complete absence of pulmonary NK cells, together with marked apoptosis (13, 42). During influenza virus infection in mice, a transient increase of NK cytotoxicity is followed by a marked decrease in NK cell activity, with a virus dose-dependent effect (8, 28). These data suggest that influenza virus may directly target NK cells as part of its immunoevasion strategies. However, no reports of the direct effects of influenza virus on human NK cells have so far been available.In this study, we demonstrated that influenza virus infects and replicates in primary human NK cells. Viral infection was dependent on sialic acids on the cells. The entry was mediated by both clathrin- and caveolin-dependent endocytosis rather than macropinocytosis. Influenza virus infection induced a marked apoptosis of NK cells, which contributed to reduced NK cell cytotoxicity. This, to the best of our knowledge, is the first paper to demonstrate that influenza virus can directly infect NK cells and induce cell apoptosis. These findings suggest that influenza virus may have developed a novel strategy to evade NK cell innate immune defenses, which is likely to facilitate viral transmission and may also contribute to virus pathogenesis.  相似文献   
910.
This work provides direct evidence that sustained tensile stress exists in white matter of the mature mouse brain. This finding has important implications for the mechanisms of brain development, as tension in neural axons has been hypothesized to drive cortical folding in the human brain. In addition, knowledge of residual stress is required to fully understand the mechanisms behind traumatic brain injury and changes in mechanical properties due to aging and disease. To estimate residual stress in the brain, we performed serial dissection experiments on 500-mum thick coronal slices from fresh adult mouse brains and developed finite element models for these experiments. Radial cuts were made either into cortical gray matter, or through the cortex and the underlying white matter tract composed of parallel neural axons. Cuts into cortical gray matter did not open, but cuts through both layers consistently opened at the point where the cut crossed the white matter. We infer that the cerebral white matter is under considerable tension in the circumferential direction in the coronal cerebral plane, parallel to most of the neural fibers, while the cerebral cortical gray matter is in compression. The models show that the observed deformation after cutting can be caused by more growth in the gray matter than in the white matter, with the estimated tensile stress in the white matter being on the order of 100–1,000 Pa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号