排序方式: 共有119条查询结果,搜索用时 15 毫秒
31.
Serum immunoglobulins of O. mossambicus were purified using chromatography methods--CM affinity gel blue chromatography followed by two step purification involving a combination of ion-exchange and gel filtration chromatography. Studies revealed that O. mossambicus produces only one class of high molecular weight macroglobulin as determined by molecular sieving by Sepharose CL 6-B. Immunoelectrophoresis of purified O. mossambicus serum against rabbit anti O. mossambicus serum gave only a single precipitin line. Further analysis of the immunoglobulin by SDS-PAGE showed that the IgM macroglobulin weighs about 900,000 Da, composed of mu-like heavy chain weighing about 90 kDa each and light chains weighing about 30 kDa each. 相似文献
32.
Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells 总被引:3,自引:0,他引:3
CH. Ramamurthy K. S. Sampath P. Arunkumar M. Suresh Kumar V. Sujatha K. Premkumar C. Thirunavukkarasu 《Bioprocess and biosystems engineering》2013,36(8):1131-1139
Green synthesis of selenium nanoparticles (SeNPs) was achieved by a simple biological procedure using the reducing power of fenugreek seed extract. This method is capable of producing SeNPs in a size range of about 50–150 nm, under ambient conditions. The synthesized nanoparticles can be separated easily from the aqueous sols by a high-speed centrifuge. These selenium nanoparticles were characterized by UV–Vis spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and elemental analysis by X-ray fluorescence spectrometer (XRF). Nanocrystalline SeNPs were obtained without post-annealing treatment. FTIR spectrum confirms the presence of various functional groups in the plant extract, which may possibly influence the reduction process and stabilization of nanoparticles. The cytotoxicity of SeNPs was assayed against human breast-cancer cells (MCF-7). It was found that SeNPs are able to inhibit the cell growth by dose-dependent manner. In addition, combination of SeNPs and doxorubicin shows better anticancer effect than individual treatments. 相似文献
33.
Rebecca Lopez Arunkumar Arumugam Riya Joseph Kanika Monga Thiyagarajan Boopalan Pamela Agullo Christina Gutierrez Sushmita Nandy Ramadevi Subramani Jose Manuel de la Rosa Rajkumar Lakshmanaswamy 《PloS one》2013,8(11)
Obesity and diabetes are associated with increased breast cancer risk and worse disease progression once cancer is diagnosed; however, the exact etiology behind these observations remains to be fully elucidated. Due to the global obesity/diabetes pandemic, it is imperative to understand how these diseases promote and enhance breast cancer and other common cancers. In this study we demonstrate that hyperglycemia promotes breast cancer by altering leptin/IGF1R and AKT/mTOR signaling. To our knowledge, we show for the first time that in breast epithelial cells, hyperglycemia alone directly impacts leptin signaling. Hyperglycemia increased proliferation of both non-tumorigenic and malignant mammary epithelial cells. These observations coincided with increased leptin receptor and IGF1R receptor, as well as, increased levels of GRB2, pJAK2, pSTAT3, pIRS1/2, pAKT, and p-mTOR. Moreover, pJAK2 was almost completely colocalized with leptin receptor under high glucose conditions. These results demonstrate how hyperglycemia can potentially increase the risk of breast cancer in premalignant lesions and enhance cancer progression in malignant cells. 相似文献
34.
Protein lysine methyltransferase G9a acts on non-histone targets 总被引:1,自引:0,他引:1
Rathert P Dhayalan A Murakami M Zhang X Tamas R Jurkowska R Komatsu Y Shinkai Y Cheng X Jeltsch A 《Nature chemical biology》2008,4(6):344-346
By methylation of peptide arrays, we determined the specificity profile of the protein methyltransferase G9a. We show that it mostly recognizes an Arg-Lys sequence and that its activity is inhibited by methylation of the arginine residue. Using the specificity profile, we identified new non-histone protein targets of G9a, including CDYL1, WIZ, ACINUS and G9a (automethylation), as well as peptides derived from CSB. We demonstrate potential downstream signaling pathways for methylation of non-histone proteins. 相似文献
35.
36.
Lee SK Sirajudeen KN Sundaram A Zakaria R Singh HJ 《Journal of physiology and biochemistry》2011,67(2):249-257
Although melatonin lowers blood pressure in spontaneously hypertensive rats (SHR), its effect following antenatal and postpartum supplementation on the subsequent development of hypertension in SHR pups remains unknown. To investigate this, SHR dams were given melatonin in drinking water (10 mg/kg body weight/day) from day 1 of pregnancy until day 21 postpartum. After weaning, a group of male pups continued to receive melatonin till the age of 16 weeks (Mel-SHR), while no further melatonin was given to another group of male pups (Maternal-Mel-SHR). Controls received plain drinking water. Systolic blood pressure (SBP) was measured at 4, 6, 8, 12 and 16 weeks of age, after which the kidneys were collected for analysis of antioxidant enzyme profiles. SBP was significantly lower till the age of 8 weeks in Maternal-Mel-SHR and Mel-SHR than that in the controls, after which no significant difference was evident in SBP between the controls and Maternal-Mel-SHR. SBP in Mel-SHR was lower than that in controls and Maternal-Mel-SHR at 12 and 16 weeks of age. Renal glutathione peroxidase (GPx) and glutathione s-transferase (GST) activities, levels of total glutathione and relative GPx-1 protein were significantly higher in Mel-SHR. GPx protein was however significantly higher in Mel-SHR. No significant differences were evident between the three groups in the activities of superoxide dismutase, catalase and glutathione reductase. In conclusion, it appears that while antenatal and postpartum melatonin supplementation decreases the rate of rise in blood pressure in SHR offspring, it however does not alter the tendency of offspring of SHR to develop hypertension. 相似文献
37.
GaneshPrasad ArunKumar David F. Soria-Hernanz Valampuri John Kavitha Varatharajan Santhakumari Arun Adhikarla Syama Kumaran Samy Ashokan Kavandanpatti Thangaraj Gandhirajan Koothapuli Vijayakumar Muthuswamy Narayanan Mariakuttikan Jayalakshmi Janet S. Ziegle Ajay K. Royyuru Laxmi Parida R. Spencer Wells Colin Renfrew Theodore G. Schurr Chris Tyler Smith Daniel E. Platt Ramasamy Pitchappan The Genographic Consortium 《PloS one》2012,7(11)
Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India. 相似文献
38.
The SET8 histone lysine methyltransferase, which monomethylates the histone 4 lysine 20 residue plays important roles in cell cycle control and genomic stability. By employing peptide arrays we have shown that it has a long recognition sequence motif covering seven amino acid residues, viz. R17–H18–(R19KY)–K20–(V21ILFY)–(L22FY)–R23. Celluspots peptide array methylation studies confirmed specific monomethylation of H4K20 and revealed that the symmetric and asymmetric methylation on R17 of the H4 tail inhibits methylation on H4K20. Similarly, dimethylation of the R located at the −3 position also reduced methylation of p53 K382 which had been shown previously to be methylated by SET8. Based on the derived specificity profile, we identified 4 potential non-histone substrate proteins. After relaxing the specificity profile, we identified several more candidate substrates and showed efficient methylation of 20 novel non-histone peptides by SET8. However, apart from H4 and p53 none of the identified novel peptide targets was methylated at the protein level. Since H4 and p53 both contain the target lysine in an unstructured part of the protein, we conclude that the long recognition sequence of SET8 makes it difficult to methylate a lysine in a folded region of a protein, because amino acid side chains essential for recognition will be buried. 相似文献
39.
40.
Amita Datta-Mannan Arunkumar Thangaraju Donmienne Leung Ying Tang Derrick R Witcher Jirong Lu Victor J Wroblewski 《MABS-AUSTIN》2015,7(3):483-493
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an ∼7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule''s disposition. 相似文献