首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1024篇
  免费   55篇
  国内免费   1篇
  1080篇
  2023年   6篇
  2022年   15篇
  2021年   25篇
  2020年   18篇
  2019年   25篇
  2018年   27篇
  2017年   28篇
  2016年   31篇
  2015年   54篇
  2014年   49篇
  2013年   69篇
  2012年   75篇
  2011年   77篇
  2010年   44篇
  2009年   36篇
  2008年   61篇
  2007年   54篇
  2006年   52篇
  2005年   39篇
  2004年   42篇
  2003年   43篇
  2002年   32篇
  2001年   15篇
  2000年   14篇
  1999年   11篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1992年   4篇
  1990年   5篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1891年   5篇
  1890年   2篇
  1885年   2篇
  1883年   5篇
  1879年   2篇
  1877年   5篇
  1876年   3篇
  1874年   4篇
  1873年   5篇
  1872年   7篇
  1871年   2篇
  1870年   3篇
排序方式: 共有1080条查询结果,搜索用时 0 毫秒
31.
32.
Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity.  相似文献   
33.
Changes in the proteins of chickpea during a 12-day germination period are reported using techniques of gel filtration, DEAE-cellulose chromatography, polyacrylamide gel (PAG) electrophoresis and ultracentrifugation. In the ultracentrifuge, the total proteins of dormant seeds resolve into 3 components which have the sedimentation coefficients of 2.2 S, 6.9 S and 10.3 S respectively. On germination, the presence of fractions of lower sedimentation coefficient indicates possible degradation of these components; in the early stages, the degradation rate of the 7 S fraction is higher, while the 10 S fraction is broken down faster in the later stages. Gel filtration experiments indicate the possibility of degradation of high polymer into intermediary products. Increase in the relative mobility of protein components on PAG and elution constant on DEAE-cellulose chromatographs indicates an increase in the net negative charge of the protein fractions. The accumulation of subunits of the proteins is negligible during the germination period.  相似文献   
34.
The aim of this study was to determine the effect of stress on reproduction and the possible involvement of dopaminergic systems in the reproductive stress response in the mosquitofish Gambusia affinis. Exposure of fish to aquaculture stressors (four 10 min episodes of stress, each corresponding to a different stressor such as handling, chasing, frequent netting and low water levels), for a period of 30 days caused reduction in the mean numbers of stage I–IV follicles associated with lower number of pregnant females and embryos in most of the developmental stages compared with experimental controls. Besides, increase in the intensity of labelling and the per cent area of tyrosine hydroxylase (TH; a rate-limiting enzyme in the biosynthetic pathway of catecholamines)- immunoreactive (ir) neurons was observed in the preoptic area (POA) and the nucleus preopticus (NPO) regions of the brain concomitant with reduction in the labelling of gonadotropin releasing hormone–immunoreactive (GnRH-ir) fibres in the proximal pars distalis (PPD) of the pituitary gland in stressed fish compared with experimental controls. Treatment of domperidone (DOM) caused an increase in the number of stage II and V follicles and promoted pregnancy rate concomitant with an increase in the number of embryos at various developmental stages compared with those of experimental controls. Similar treatment to stressed fish caused an increase in the number of stages I–V follicles compared with those in stress alone group. The GnRH fibres showed increased immunolabelling in stress + DOM treated fish compared with stress alone fish. On the other hand, TH-immunoreactivity in the POA and the NPO regions was reduced in stress + DOM treated fish compared with stress-alone group. These results suggest that stress inhibits follicular development and subsequent hatching success through the suppression of GnRH and that the inhibition appears to be mediated through dopamine, for the first time in a viviparous fish.  相似文献   
35.
36.
37.
38.
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.DNA double-strand breaks (DSBs) are potentially dangerous lesions, since their misrepair may cause chromosomal translocations, gene amplifications, loss of heterozygosity (LOH), and other types of genomic instability characteristic of human cancers (7, 9, 21, 40, 76, 79). DSBs are repaired predominantly by nonhomologous end joining or homologous recombination (HR), two evolutionarily conserved DSB repair mechanisms (8, 12, 16, 33, 48, 60, 71). DSBs generated during the S or G2 phase of the cell cycle may be repaired preferentially by HR, using the intact sister chromatid as a template for repair (12, 26, 29, 32, 71). Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DSBs, which has led to the proposal that SCR protects against genomic instability, cancer, and aging. Indeed, a number of human cancer predisposition genes are implicated in SCR control (10, 24, 45, 57, 75).HR entails an initial processing of the DSB to generate a free 3′ single-stranded DNA (ssDNA) overhang (25, 48, 56). This is coupled to the loading of Rad51, the eukaryotic homolog of Escherichia coli RecA, which polymerizes to form an ssDNA-Rad51 “presynaptic” nucleoprotein filament. Formation of the presynaptic filament is tightly regulated and requires the concerted action of a large number of gene products (55, 66, 68). Rad51-coated ssDNA engages in a homology search by invading homologous duplex DNA. If sufficient homology exists between the invading and invaded strands, a triple-stranded synapse (D-loop) forms, and the 3′ end of the invading (nascent) strand is extended, using the donor as a template for gene conversion. This recombination intermediate is thought to be channeled into one of the following two major subpathways: classical gap repair or synthesis-dependent strand annealing (SDSA) (48). Gap repair entails the formation of a double Holliday junction, which may resolve into either crossover or noncrossover products. Although this is a major pathway in meiotic recombination, crossing-over is highly suppressed in somatic eukaryotic cells (26, 44, 48). Indeed, the donor DNA molecule is seldom rearranged during somatic HR, suggesting that SDSA is the major pathway for the repair of somatic DSBs (26, 44, 49, 69). SDSA terminates when the nascent strand is displaced from the D-loop and pairs with the second end of the DSB to form a noncrossover product. The mechanisms underlying displacement of the nascent strand are not well understood. However, failure to displace the nascent strand might be expected to result in the production of longer gene conversion tracts during HR (36, 44, 48, 63).Gene conversion triggered in response to a Saccharomyces cerevisiae or mammalian chromosomal DSB generally results in the copying of a short (50- to 300-bp) stretch of information from the donor (short-tract gene conversion [STGC]) (14, 47, 48, 67, 69). A minority of gene conversions in mammalian cells entail more-extensive copying, generating gene conversion tracts that are up to several kilobases in length (long-tract gene conversion [LTGC]) (26, 44, 51, 54, 64). In yeast, very long gene conversions can result from break-induced replication (BIR), a highly processive form of gene conversion in which a bona fide replication fork is thought to be established at the recombination synapse (11, 36, 37, 39, 61, 63). In contrast, SDSA does not require lagging-strand polymerases and appears to be much less processive than a conventional replication fork (37, 42, 78). BIR in yeast has been proposed to play a role in LOH in aging yeast, telomere maintenance, and palindromic gene amplification (5, 41, 52). It is unclear to what extent a BIR-like mechanism operates in mammalian cells, although BIR has been invoked to explain telomere elongation in tumors lacking telomerase (13). It is currently unknown whether LTGC and STGC in somatic mammalian cells are products of mechanistically distinct pathways or whether they represent alternative outcomes of a common SDSA pathway.Vertebrate cells contain five Rad51 paralogs—polypeptides with limited sequence homology to Rad51—Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3 (74). The Rad51 paralogs form the following two major complexes: Rad51B/Rad51C/Rad51D/XRCC2 (BCDX2) and Rad51C/XRCC3 (CX3) (38, 73). Genetic deletion of any one of the rad51 paralogs in the mouse germ line produces early embryonic lethality, and mouse or chicken cells lacking any of the rad51 paralogs reveal hypersensitivity to DNA-damaging agents, reduced frequencies of HR and of sister chromatid exchanges, increased chromatid-type errors, and defective sister chromatid cohesion (18, 72, 73, 82). Collectively, these data implicate the Rad51 paralogs in SCR regulation. The purified Rad51B/Rad51C complex has been shown to assist Rad51-mediated strand exchange (62). XRCC3 null or Rad51C null hamster cells reveal a bias toward production of longer gene conversion tracts, suggesting a role for the CX3 complex in late stages of SDSA (6, 44). Rad51C copurifies with branch migration and Holliday junction resolution activities in mammalian cell extracts (35), and XRCC3, but not XRCC2, facilitates telomere shortening by reciprocal crossing-over in telomeric T loops (77). These data, taken together with the meiotic defects observed in Rad51C hypomorphic mice, suggest a specialized role for CX3, but not for BCDX2, in resolving Holliday junction structures (31, 58).To further address the roles of Rad51 paralogs in late stages of recombination, we have studied the balance between long-tract (>1-kb) and short-tract (<1-kb) SCR in XRCC2 mutant hamster cells. We found that DSB-induced gene conversion in both XRCC2 and XRCC3 mutant cells is biased in favor of LTGC. These defects were suppressed by expression of wild-type (wt) XRCC2 or XRCC3, respectively, although the dependence upon ATP binding and hydrolysis differed between the two Rad51 paralogs. These results indicate that Rad51 paralogs play a more general role in determining the balance between STGC and LTGC than was previously appreciated and suggest roles for both the BCDX2 and CX3 complexes in influencing the termination of gene conversion in mammals.  相似文献   
39.
Pseudomonas desmolyticum NCIM 2112 (Pd 2112) and Nocardia hydrocarbonoxydans NCIM 2386 (Nh 2386) demonstrated an ability to degrade diesel and kerosene. Triton X-100 had enhanced the diesel degradation process by reducing the time required for the maximum utilization of total petroleum hydrocarbon. Fourier transform infrared spectroscopy spectrum of degraded diesel indicates the presence of aliphatic and aromatic aldehydes, C=C aromatic nuclei, and substituted benzenes. Surface tension reduction and stable emulsification was increased using consortium when compared to individual strains. Triton X-100 showed increase in microbial attachment to hydrocarbon among the various chemical surfactants tested. For generating a rapid assay to screen microorganisms capable of degrading kerosene, the acetaldehyde produced in the degradation process could be used as an indicator of degradation. These results indicate diesel and kerosene degradation ability of both of the strains.  相似文献   
40.
The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates. Some members of this family had a rare autosomal-recessive syndrome characterized by severe hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Their clinical presentation overlaps with some reported cases of pseudo-TORCH syndrome as well as with cases involving mutations in occludin, another component of the tight-junction complex. However, massive intracranial hemorrhage distinguishes these patients from others. Homozygosity mapping identified the disease locus in this family on chromosome 11q25 with a maximum multipoint LOD score of 6.15. Sequence analysis of genes in the candidate interval uncovered a mutation in the canonical splice-donor site of intron 5 of JAM3. RT-PCR analysis of a patient lymphoblast cell line confirmed abnormal splicing, leading to a frameshift mutation with early termination. JAM3 is known to be present in vascular endothelium, although its roles in cerebral vasculature have not been implicated. Our results suggest that JAM3 is essential for maintaining the integrity of the cerebrovascular endothelium as well as for normal lens development in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号