首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   56篇
  国内免费   1篇
  2024年   2篇
  2023年   7篇
  2022年   15篇
  2021年   27篇
  2020年   20篇
  2019年   29篇
  2018年   29篇
  2017年   32篇
  2016年   36篇
  2015年   56篇
  2014年   52篇
  2013年   79篇
  2012年   87篇
  2011年   83篇
  2010年   53篇
  2009年   45篇
  2008年   65篇
  2007年   56篇
  2006年   50篇
  2005年   40篇
  2004年   43篇
  2003年   40篇
  2002年   34篇
  2001年   17篇
  2000年   16篇
  1999年   13篇
  1998年   8篇
  1997年   6篇
  1996年   7篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1957年   1篇
排序方式: 共有1078条查询结果,搜索用时 15 毫秒
61.
A remote site in the Tallgrass Prairie Preserve of Oklahoma (The Nature Conservancy) was contaminated with crude oil from a pipeline break and is being bioremediated using landfarming techniques. Landfarming is designed to stimulate microbial-based catabolism of petroleum through combined dilution/mixing and fertilization-based effects. To evaluate nitrogen-based effects during remediation, the site was sectioned and treated with urea, ammonium sulfate, or ammonium nitrate. Samples were obtained from prairie soil without chemical nitrogen addition and with or without hydrocarbon contamination. Nitrogen cycling dynamics were followed by measuring ammonium, nitrite, nitrate, and volatile nitric oxide (NOx) levels. Nitrifying and denitrifying bacterial numbers were estimated and compared to soil oxygen, carbon dioxide, and methane levels as well as to overall total petroleum hydrocarbon (TPH) reduction. For a prairie ecosystem of this type, a high level of fertilization, particularly with nitrogen, can have ecological effects almost as profound as the petroleum contamination itself. Fertilization of the oil-contaminated soil with the reduced and/or oxidized forms of nitrogen quickly resulted in elevated steady-state levels of both ammonium and nitrate, and exceptionally high levels of NOx released from soil. Although nitrogen fertilization increased microbial nitrogen metabolism and nitrogen cycling, it had minimal effects on the overall remediation efficiency.  相似文献   
62.
We document here the presence of a recombinant plastome in a cytoplasmic male sterile (CMS) line of Brassica juncea developed from the somatic hybrid Trachystoma ballii?+?B. juncea. Restriction endonuclease digestion of the chloroplast (cp) DNA has revealed that the recombinant plastome gives rise to novel fragments in addition to the parent-specific fragments. Analysis of the 16S rRNA region by Southern hybridization shows no variation between B. juncea, T. ballii and the CMS line. The rbcL gene region of the recombinant plastome is identical to that in T. ballii. Analysis with probes for psbA and psbD using single and double DNA digests indicates that the hybridization patterns of the recombinant plastome are identical to those of the parents in digests obtained with some restriction enzymes, while novel bands hybridize to probes in other digests. In the psbA region, a B. juncea-specific PstI site and a T. ballii-specific EcoRI site are found in the recombinant plastome. The psbD region of the recombinant plastome contains a B. juncea-specific HindIII site and T. ballii-specific BamHI and HpaII sites. These results indicate the occurrence of intergenomic recombination between the chloroplasts of T. ballii and B. juncea in the somatic hybrid from which the CMS line was developed. The recombined plastome appears to be a mosaic of fragments specific to both parents and the recombination event has occurred in the single-copy regions. These recombinational events have not caused any imbalance in the recombinant plastome in terms of chloroplast-related functions, which have remained stable over generations.  相似文献   
63.
In an attempt to develop a high-throughput screening system for screening microorganisms which produce high amounts of malate, a MalKZ chimeric HK-based biosensor was constructed. Considering the sequence similarity among Escherichia coli (E. coli) MalK with Bacillus subtilis MalK and E. coli DcuS, the putative sensor domain of MalK was fused with the catalytic domain of EnvZ. The chimeric MalK/EnvZ TCS induced the ompC promoter through the cognate response regulator, OmpR, in response to extracellular malate. Real-time quantitative PCR and GFP fluorescence studies showed increased ompC gene expression and GFP fluorescence as malate concentration increased. By using this strategy, various chimeric TCS-based bacteria biosensors can be constructed, which may be used for the development of biochemical-producing recombinant microorganisms.  相似文献   
64.
65.
Iron (Fe) deficiency significantly effects plant growth and development. Plant symptoms under excess zinc (Zn) resemble symptoms of Fe‐deficient plants. To understand cross‐talk between excess Zn and Fe deficiency, we investigated physiological parameters of Arabidopsis plants and applied iTRAQ‐OFFGEL quantitative proteomic approach to examine protein expression changes in microsomal fraction from Arabidopsis shoots under those physiological conditions. Arabidopsis plants manifested shoot inhibition and chlorosis symptoms when grown on Fe‐deficient media compared to basal MGRL solid medium. iTRAQ‐OFFGEL approach identified 909 differentially expressed proteins common to all three biological replicates; the majority were transporters or proteins involved in photosynthesis, and ribosomal proteins. Interestingly, protein expression changes between excess Zn and Fe deficiency showed similar pattern. Further, the changes due to excess Zn were dramatically restored by the addition of Fe. To obtain biological insight into Zn and Fe cross‐talk, we focused on transporters, where STP4 and STP13 sugar transporters were predominantly expressed and responsive to Fe‐deficient conditions. Plants grown on Fe‐deficient conditions showed significantly increased level of sugars. These results suggest that Fe deficiency might lead to the disruption of sugar synthesis and utilization.  相似文献   
66.
The work investigates on the potential of ten mangrove species for absorption, accumulation and partitioning of trace metal(loid)s in individual plant tissues (leaves, bark and root/pneumatophore) at two study sites of Indian Sundarban Wetland. The metal(loid) concentration in host sediments and their geochemical characteristics were also considered. Mangrove sediments showed unique potential in many- fold increase for most metal(loid)s than plant tissues due to their inherent physicochemical properties. The ranges of concentration of trace metal(loid)s for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in plant tissue were 0.006–0.31, 0.02–2.97, 0.10–4.80, 0.13–6.49, 4.46–48.30, 9.2–938.1, 0.02–0.13, 9.8–1726, 11–5.41, 0.04–7.64, 3.81–52.20 μg g ?1respectively. The bio- concentration factor (BCF) showed its maximum value (15.5) in Excoecaria agallocha for Cd, suggesting that it can be considered as a high-efficient plant for heavy metal bioaccumulation. Among all metals, Cd and Zn were highly bioaccumulated in E. agallocha (2.97 and 52.2 μg g ?1 respectively. Our findings suggest that the species may be classified as efficient metal trap for Cd in aerial parts, as indicated by higher metal accumulation in the leaves combined with BCF and translocation factor (TF) values.  相似文献   
67.
A 59-year-old man was diagnosed with urothelial carcinoma involving an isolated cerebellar metastasis after presenting to the emergency department for headache complaints. After selective surgical excision of the symptomatic brain lesion and delayed cystectomy due to intractable hematuria, he survived 11 years without evidence of recurrence or subsequent systemic chemotherapy. He eventually expired after delayed recurrence in the lung, supraclavicular lymph node, and brain. To our knowledge, this is the only case of prolonged survival from urothelial carcinoma after selective surgical extirpation of the primary and metastatic lesion without subsequent systemic chemotherapy.Key words: Bladder cancer, Cystectomy, Metastasis, Urothelial carcinomaUsually, brain metastasis of bladder urothelial carcinoma is associated with widespread systemic disease and/or multiple brain lesions. It is exceedingly rare to have bladder cancer metastasize to the brain without evidence of additional systemic manifestations.1 As with other forms of distant urothelial carcinoma metastasis, brain metastasis is associated with poor prognosis, with survival often less than 14 months in those with solitary brain lesions.2 We report an isolated bladder urothelial carcinoma metastasis to the cerebellum with an 11-year survival fol-lowing extirpative therapy of both the primary lesion and brain metastasis.  相似文献   
68.
Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria. They not only represent a potential platform for development of novel vaccines but also provide a tool for efficient adjuvant and antigen delivery system. In the present study, we investigated the interaction between BGs of Escherichia coli (E. coli) and bovine monocyte-derived dendritic cells (MoDCs). MoDCs are highly potent antigen-presenting cells and have the potential to act as a powerful tool for manipulating the immune system. We generated bovine MoDCs in vitro from blood monocytes using E. coli expressed bovine GM-CSF and IL-4 cytokines. These MoDCs displayed typical morphology and functions similar to DCs. We further investigated the E. coli BGs to induce maturation of bovine MoDCs in comparison to E. coli lipopolysaccharide (LPS). We observed the maturation marker molecules such as MHC-II, CD80 and CD86 were induced early and at higher levels in BG stimulated MoDCs as compared to the LPS stimulated MoDCs. BG mediated stimulation induced significantly higher levels of cytokine expression in bovine MoDCs than LPS. Both pro-inflammatory (IL-12 and TNF-α) and anti-inflammatory (IL-10) cytokines were induced in MoDCs after BGs stimulation. We further analysed the effects of BGs on the bovine MoDCs in an allogenic mixed lymphocyte reaction (MLR). We found the BG-treated bovine MoDCs had significantly (p<0.05) higher capacity to stimulate allogenic T cell proliferation in MLR as compared to the LPS. Taken together, these findings demonstrate the E. coli BGs induce a strong activation and maturation of bovine MoDCs.  相似文献   
69.
Thrombocytopenia in methotrexate (MTX)-treated cancer and rheumatoid arthritis (RA) patients connotes the interference of MTX with platelets. Hence, it seemed appealing to appraise the effect of MTX on platelets. Thereby, the mechanism of action of MTX on platelets was dissected. MTX (10 μM) induced activation of pro-apoptotic proteins Bid, Bax and Bad through JNK phosphorylation leading to ΔΨm dissipation, cytochrome c release and caspase activation, culminating in apoptosis. The use of specific inhibitor for JNK abrogates the MTX-induced activation of pro-apoptotic proteins and downstream events confirming JNK phosphorylation by MTX as a key event. We also demonstrate that platelet mitochondria as prime sources of ROS which plays a central role in MTX-induced apoptosis. Further, MTX induces oxidative stress by altering the levels of ROS and glutathione cycle. In parallel, the clinically approved thiol antioxidant N-acetylcysteine (NAC) and its derivative N-acetylcysteine amide (NACA) proficiently alleviate MTX-induced platelet apoptosis and oxidative damage. These findings underpin the dearth of research on interference of therapeutic drugs with platelets, despite their importance in human health and disease. Therefore, the use of antioxidants as supplementary therapy seems to be a safe bet in pathologies associated with altered platelet functions.  相似文献   
70.
Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB) of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine. The pathophysiology of podocytopathies makes podocytes a potential and challenging target for nanomedicine development, though there is a lack of known molecular targets for cell selective drug delivery. To identify VCAM-1 as a cell-surface receptor that is suitable for binding and internalization of nanomedicine carrier systems by podocytes, we investigated its expression in the immortalized podocyte cell lines AB8/13 and MPC-5, and in primary podocytes. Gene and protein expression analyses revealed that VCAM-1 expression is increased by podocytes upon TNFα-activation for up to 24 h. This was paralleled by anti-VCAM-1 antibody binding to the TNFα-activated cells, which can be employed as a ligand to facilitate the uptake of nanocarriers under inflammatory conditions. Hence, we next explored the possibilities of using VCAM-1 as a cell-surface receptor to deliver the potent immunosuppressant rapamycin to TNFα-activated podocytes using the lipid-based nanocarrier system Saint-O-Somes. Anti-VCAM-1-rapamycin-SAINT-O-Somes more effectively inhibited the cell migration of AB8/13 cells than free rapamycin and non-targeted rapamycin-SAINT-O-Somes indicating the potential of VCAM-1 targeted drug delivery to podocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号