全文获取类型
收费全文 | 1043篇 |
免费 | 91篇 |
国内免费 | 1篇 |
专业分类
1135篇 |
出版年
2023年 | 7篇 |
2022年 | 15篇 |
2021年 | 28篇 |
2020年 | 18篇 |
2019年 | 23篇 |
2018年 | 28篇 |
2017年 | 27篇 |
2016年 | 30篇 |
2015年 | 56篇 |
2014年 | 51篇 |
2013年 | 75篇 |
2012年 | 82篇 |
2011年 | 81篇 |
2010年 | 52篇 |
2009年 | 42篇 |
2008年 | 66篇 |
2007年 | 56篇 |
2006年 | 54篇 |
2005年 | 39篇 |
2004年 | 42篇 |
2003年 | 46篇 |
2002年 | 40篇 |
2001年 | 28篇 |
2000年 | 19篇 |
1999年 | 17篇 |
1998年 | 5篇 |
1997年 | 13篇 |
1996年 | 10篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 6篇 |
1992年 | 12篇 |
1991年 | 3篇 |
1990年 | 8篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 6篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 2篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1978年 | 4篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有1135条查询结果,搜索用时 15 毫秒
81.
Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a cross‐talk between excess zinc and iron deficiency 下载免费PDF全文
Sajad Majeed Zargar Rie Kurata Shoko Inaba Akira Oikawa Risa Fukui Yoshiyuki Ogata Ganesh Kumar Agrawal Randeep Rakwal Yoichiro Fukao 《Proteomics》2015,15(7):1196-1201
Iron (Fe) deficiency significantly effects plant growth and development. Plant symptoms under excess zinc (Zn) resemble symptoms of Fe‐deficient plants. To understand cross‐talk between excess Zn and Fe deficiency, we investigated physiological parameters of Arabidopsis plants and applied iTRAQ‐OFFGEL quantitative proteomic approach to examine protein expression changes in microsomal fraction from Arabidopsis shoots under those physiological conditions. Arabidopsis plants manifested shoot inhibition and chlorosis symptoms when grown on Fe‐deficient media compared to basal MGRL solid medium. iTRAQ‐OFFGEL approach identified 909 differentially expressed proteins common to all three biological replicates; the majority were transporters or proteins involved in photosynthesis, and ribosomal proteins. Interestingly, protein expression changes between excess Zn and Fe deficiency showed similar pattern. Further, the changes due to excess Zn were dramatically restored by the addition of Fe. To obtain biological insight into Zn and Fe cross‐talk, we focused on transporters, where STP4 and STP13 sugar transporters were predominantly expressed and responsive to Fe‐deficient conditions. Plants grown on Fe‐deficient conditions showed significantly increased level of sugars. These results suggest that Fe deficiency might lead to the disruption of sugar synthesis and utilization. 相似文献
82.
Joan A. Geoghegan Vannakambadi K. Ganesh Emanuel Smeds Xiaowen Liang Magnus H??k Timothy J. Foster 《The Journal of biological chemistry》2010,285(9):6208-6216
The ligand-binding domain of Fbl (the fibrinogen binding protein from Staphylococcus lugdunensis) shares 60% sequence identity with ClfA (clumping factor A) of Staphylococcus aureus. Recombinant Fbl corresponding to the minimum fibrinogen-binding region (subdomains N2N3) was compared with ClfA for binding to fibrinogen. Fbl and ClfA had very similar affinities for fibrinogen by surface plasmon resonance. The binding site for Fbl in fibrinogen was localized to the extreme C terminus of the fibrinogen γ-chain at the same site recognized by ClfA. Isothermal titration calorimetry showed that Fbl and ClfA had very similar affinities for a peptide mimicking the C-terminal segment of the fibrinogen γ-chain. The peptide also inhibited binding of Fbl and ClfA to fibrinogen. A series of substituted γ-chain variant peptides behaved very similarly when used to inhibit ClfA and Fbl binding to immobilized fibrinogen. Both ClfA and Fbl bound to bovine fibrinogen with a lower affinity compared with human fibrinogen and did not bind detectably to ovine fibrinogen. The structure of the N2N3 subdomains of Fbl in complex with the fibrinogen γ-chain peptide was modeled based on the crystal structure of the N2N3 subdomains of the ClfA-γ-chain peptide complex. Residues in the putative binding trench likely to be involved in fibrinogen binding were identified. Fbl variant proteins with alanine substitutions in key residues had reduced affinities for fibrinogen. Thus Fbl and ClfA bind the same site in fibrinogen by similar mechanisms. 相似文献
83.
Caná L. Ross Xiaowen Liang Qing Liu Barbara E. Murray Magnus H??k Vannakambadi K. Ganesh 《The Journal of biological chemistry》2012,287(41):34856-34865
The collagen-binding bacterial proteins, Ace and Cna, are well characterized on the biochemical and structural level. Despite overall structural similarity, recombinant forms of the Ace and Cna ligand-binding domains exhibit significantly different affinities and binding kinetics for collagen type I (CI) in vitro. In this study, we sought to understand, in submolecular detail, the bases for these differences. Using a structure-based approach, we engineered Cna and Ace variants by altering specific structural elements within the ligand-binding domains. Surface plasmon resonance-based binding analysis demonstrated that mutations that are predicted to alter the orientation of the Ace and Cna N1 and N2 subdomains significantly affect the interaction between the MSCRAMM (microbial surface components recognizing adhesive matrix molecule) and CI in vitro, including affinity, association/dissociation rates and binding ratio. Moreover, we utilized this information to engineer an Ace variant with an 11,000-fold higher CI affinity than the parent protein. Finally, we noted that several engineered proteins that exhibited a weak interaction with CI recognized more sites on CI, suggesting an inverse correlation between affinity and specificity. 相似文献
84.
Role of serotonin in olfactory recognition was tested by depleting the olfactory bulb serotonin during postnatal day (PND) 1 - 4 following administration of 5,7-dihydroxytryptamine. Significant difference in the olfactory recognition test was observed during PND5-7; control pups successfully recognized and oriented towards their mother; whereas treated pups failed to recognize their mother odour. Later on, during PND12-14, both group of pups responded equally in the recognition test. Levels of olfactory bulb serotonin were depleted (53.3%) in the treated pups on PND-8, which was restored on PND-14 with only 15% variation. Further analysis demonstrated that depletion of serotonin in olfactory bulb did not affect the normal suckling and weight gain, it only modulates olfactory recognition. 相似文献
85.
86.
Mismatch uracil glycosylase from Escherichia coli: a general mismatch or a specific DNA glycosylase?
O'Neill RJ Vorob'eva OV Shahbakhti H Zmuda E Bhagwat AS Baldwin GS 《The Journal of biological chemistry》2003,278(23):20526-20532
The gene for the mismatch-specific uracil glycosylase (MUG) was identified in the Escherichia coli genome as a sequence homolog of the mammalian thymine DNA glycosylase, with activity against uracil in U.G mismatches. Subsequently, 3,N4-ethenocytosine (epsilonC), thymine, 5-hydroxymethyluracil, and 8-(hydroxymethyl)-3,N4-ethenocytosine have been proposed as possible substrates for this enzyme. The evaluation of various DNA adducts as substrates is complicated by the biphasic nature of the kinetics of this enzyme. Our results demonstrate that product release by the enzyme is very slow and hence comparing the "steady-state" parameters of the enzyme for different substrates is of limited use. Consequently, the ability of the enzyme to excise a variety of damage products of purines and pyrimidines was studied under single turnover conditions. Although the enzyme excised both epsilonC and U from DNA, the former adduct was significantly better as a substrate in terms of binding and hydrolysis. Some products of oxidative and alkylation damage are also moderately good substrates for the enzyme, but thymine is a poor substrate. This comparison of different substrates under single turnover conditions provides a rational basis for comparing substrates of MUG and we relate these conclusions to the known crystal structures of the enzyme and its catalytic mechanism. 相似文献
87.
88.
The RecA-like proteins constitute a group of DNA strand transfer proteins ubiquitous in eubacteria, eukarya, and archaea. However, the functional relationship among RecA proteins is poorly understood. For instance, Mycobacterium tuberculosis RecA is synthesized as a large precursor, which undergoes an unusual protein-splicing reaction to generate an active form. Whereas the precursor was inactive, the active form promoted DNA strand transfer less efficiently compared to EcRecA. Furthermore, gene disruption studies have indicated that the frequencies of allele exchange are relatively lower in Mycobacterium tuberculosis compared to Mycobacterium smegmatis. The mechanistic basis and the factors that contribute to differences in allele exchange remain to be understood. Here, we show that the extent of DNA strand transfer promoted by the M. smegmatis RecA in vitro differs significantly from that of M. tuberculosis RecA. Importantly, M. smegmatis RecA by itself was unable to promote strand transfer, but cognate or noncognate SSBs rendered it efficient even when added prior to RecA. In the presence of SSB, MsRecA or MtRecA catalyzed strand transfer between ssDNA and varying lengths of linear duplex DNA with distinctly different pH profiles. The factors that were able to suppress the formation of DNA networks greatly stimulated strand transfer reactions promoted by MsRecA or MtRecA. Although the rate and pH profiles of dATP hydrolysis catalyzed by MtRecA and MsRecA were similar, only MsRecA was able to couple dATP hydrolysis to DNA strand transfer. Together, these results provide insights into the functional diversity in DNA strand transfer promoted by RecA proteins of pathogenic and nonpathogenic species of mycobacteria. 相似文献
89.
The Escherichia coli DNA glycosylase Mug excises 3,N(4)-ethenocytosines (epsilon C) and uracils from DNA, but its biological function is obscure. This is because epsilon C is not found in E. coli DNA, and uracil-DNA glycosylase (Ung), a distinct enzyme, is much more efficient at removing uracils from DNA than Mug. We find that Mug is overexpressed as cells enter stationary phase, and it is maintained at a fairly high level in resting cells. This is true of cells grown in rich or minimal media, and the principal regulation of mug is at the level of mRNA. Although the expression of mug is strongly dependent on the stationary-phase sigma factor, sigma(S), when cells are grown in minimal media, it shows only a modest dependence on sigma(S) when cells are grown in rich media. When mug cells are maintained in stationary phase for several days, they acquire many more mutations than their mug(+) counterparts. This is true in ung as well as ung(+) cells, and a majority of new mutations may not be C to T. Our results show that the biological role of Mug parallels its expression in cells. It is expressed poorly in exponentially growing cells and has no apparent role in mutation avoidance in these cells. In contrast, Mug is fairly abundant in stationary-phase cells and has an important anti-mutator role at this stage of cell growth. Thus, Mug joins a very small coterie of DNA repair enzymes whose principal function is to avoid mutations in stationary-phase cells. 相似文献
90.
Introduction of methylene bridges in aegPNA and apgPNA molecules give rise to cyclic five and six membered ring structures. Synthesis of a new six membered cyclic PNA monomer, aminopipecolyl PNA (pipPNA) is reported. Incorporation of pipPNA into PNA oligomers and comparative binding with target DNA sequences is studied. 相似文献