首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   4篇
  2023年   1篇
  2019年   1篇
  2018年   4篇
  2016年   5篇
  2015年   6篇
  2014年   15篇
  2013年   28篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1979年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
21.
Ripening of fleshy fruit: Molecular insight and the role of ethylene   总被引:1,自引:0,他引:1  
Development and ripening in fruit is a unique phase in the life cycle of higher plants which encompasses several stages progressively such as fruit development, its maturation, ripening and finally senescence. During ripening phase, several physiological and biochemical changes take place through differential expression of various genes that are developmentally regulated. Expression and/or suppression of these genes contribute to various changes in the fruit that make it visually attractive and edible. However, in fleshy fruit massive losses accrue during post harvest handling of the fruit which may run into billions of dollars worldwide. This encouraged scientists to look for various ways to save these losses. Genetic engineering appears to be the most promising and cost effective means to prevent these losses. Most fleshy fruit ripen in the presence of ethylene and once ripening has been initiated proceeds uncontrollably. Ethylene evokes several responses during ripening through a signaling cascade and thousands of genes participate which not only sets in ripening but also responsible for its spoilage. Slowing down post ripening process in fleshy fruit has been the major focus of ripening-related research. In this review article, various developments that have taken place in the last decade with respect to identifying and altering the function of ripening-related genes have been described. Role of ethylene and ethylene-responsive genes in ripening of fleshy fruit is also included. Taking clues from the studies in tomato as a model fruit, few case studies are reviewed.  相似文献   
22.
Herbicide (Basta®)-tolerant Vigna mungo L. Hepper plants were produced using cotyledonary-node and shoot-tip explants from seedlings germinated in vitro from immature seeds. In vitro selection was performed with phosphinothricin as the selection agent. Explants were inoculated with Agrobacterium tumefaciens strain LBA4404 (harboring the binary vector pME 524 carrying the nptII, bar, and uidA genes) in the presence of acetosyringone. Shoot regeneration occurred for 6 wk on regeneration medium (MS medium with 4.44 μM benzyl adenine, 0.91 μM thidiazuron, and 81.43 μM adenine sulfate) with 2.4 mg/l PPT, explants being transferred to fresh medium every 14 d. After a period on elongation medium (MS medium with 2.89 μM gibberellic acid and 2.4 mg/l PPT), β-glucuronidase-expressing putative transformants were rooted in MS medium with 7.36 μM indolyl butyric acid and 2.4 mg/l PPT. β-Glucuronidase expression was observed in the primary transformants (T0) and in the seedlings of the T1 generation. Screening 128 GUS-expressing, cotyledonary-node-derived, acclimatized plants by spraying the herbicide Basta® at 0.1 mg/l eliminated nonherbicide-resistant plants. Southern hybridization analysis confirmed the transgenic nature of the herbicide-resistant plants. All the transformed plants were fertile, and the transgene was inherited by Mendelian genetics. Immature cotyledonary-node explants produced a higher frequency of transformed plants (7.6%) than shoot-tip explants (2.6%).  相似文献   
23.
Role of intrinsic disorder in transient interactions of hub proteins   总被引:2,自引:0,他引:2  
Singh GP  Ganapathi M  Dash D 《Proteins》2007,66(4):761-765
Hubs in the protein-protein interaction network have been classified as "party" hubs, which are highly correlated in their mRNA expression with their partners while "date" hubs show lesser correlation. In this study, we explored the role of intrinsic disorder in date and party hub interactions. The data reveals that intrinsic disorder is significantly enriched in date hub proteins when compared with party hub proteins. Intrinsic disorder has been largely implicated in transient binding interactions. The disorder to order transition, which occurs during binding interactions in disordered regions, renders the interaction highly reversible while maintaining the high specificity. The enrichment of intrinsic disorder in date hubs may facilitate transient interactions, which might be required for date hubs to interact with different partners at different times.  相似文献   
24.
Topoisomerase (topo) II catalyzes topological changes in DNA. Although both human isozymes, topo IIα and β are phosphorylated, site‐specific phosphorylation of topo IIβ is poorly characterized. Using LC‐MS/MS analysis of topo IIβ, cleaved with trypsin, Arg C or cyanogen bromide (CNBr) plus trypsin, we detected four +80‐Da modified sites: tyr656, ser1395, thr1426 and ser1545. Phosphorylation at ser1395, thr1426 and ser1545 was established based on neutral loss of H3PO4 (?98 Da) in the CID spectra and on differences in 2‐D‐phosphopeptide maps of 32P‐labeled wild‐type (WT) and S1395A or T1426A/S1545A mutant topo IIβ. However, phosphorylation at tyr656 could not be verified by 2‐D‐phosphopeptide mapping of 32P‐labeled WT and Y656F mutant protein or by Western blotting with phosphotyrosine‐specific antibodies. Since the +80‐Da modification on tyr656 was observed exclusively during cleavage with CNBr and trypsin, this modification likely represented bromination, which occurred during CNBr cleavage. Re‐evaluation of the CID spectra identified +78/+80‐Da fragment ions in CID spectra of two peptides containing tyr656 and tyr711, confirming bromination. Interestingly, mutation of only tyr656, but not ser1395, thr1326 or ser1545, decreased topo IIβ activity, suggesting a functional role for tyr656. These results, while identifying an important tyrosine in topo IIβ, underscore the importance of careful interpretation of modifications having the same nominal mass.  相似文献   
25.
26.
27.
Transgenic herbicide tolerant Acacia sinuata plants were produced by transformation with the bar gene conferring phosphinothricin resistance. Precultured hypocotyl explants were infected with Agrobacterium tumefaciens strain EHA105 in the presence of 100 μM acetosyringone and shoots regenerated on MS (Murashige and Skoog, 1962, Physiol Plant 15:473–497) medium with 13.3 μM benzylaminopurine, 2.6 μM indole-3-acetic acid, 1 g l−1 activated charcoal, 1.5 mg l−1 phosphinothricin, and 300 mg l−1 cefotaxime. Phosphinothricin at 1.5 mg l−1 was used for the selection. Shoots surviving selection on medium with phosphinothricin expressed GUS. Following Southern hybridization, eight independent shoots regenerated of 500 cocultivated explants were demonstrated to be transgenic, which represented transformation frequency of 1.6%. The transgenics carried one to four copies of the transgene. Transgenic shoots were propagated as microcuttings in MS medium with 6.6 μM 6-benzylaminopurine and 1.5 mg l−1 phosphinothricin. Shoots elongated and rooted in MS medium with gibberellic acid and indole-3-butyric acid, respectively both supplemented with 1.5 mg l−1 phosphinothricin. Micropropagation of transgenic plants by microcuttings proved to be a simple means to bulk up the material. Several transgenic plants were found to be resistant to leaf painting with the herbicide Basta.  相似文献   
28.
29.
Agrobacterium-mediated transformation of rice was done using the binary vector pNSP3, harbouring the rice chitinase (chi11) gene under maize ubiquitin promoter and the tobacco β-1,3-glucanase gene under CaMV 35S promoter in the same T-DNA. Four of the six T0 plants had single copies of complete T-DNAs, while the other two had complex integration patterns. Three of the four single-copy lines showed a 3:1 segregation ratio in the T1 generation. Northern and western blot analyses of T1 plants revealed constitutive expression of chitinase and β-1,3-glucanase genes. Homozygous T2 plants of the single-copy lines CG20, CG27 and CG53 showed 62-, 9.6- and 11-fold higher chitinase activity over the control plants. β-1,3-Glucanase activity was 1.1- to 2.5-fold higher in the transgenic plants. Bioassay of homozygous T2 plants of the three single-copy transgenic lines against Rhizoctonia solani revealed a 60% reduction in sheath blight Disease Index in the first week. The Disease Index increased from 61.8 in the first week to 90.6 in the third week in control plants, while it remained low (26.8–34.2) in the transgenic T3 plants in the corresponding period, reflecting the persistence of sheath blight resistance for a longer period.  相似文献   
30.
C-Phycocyanin and allophycocyanin of Spirulina platensis are fractionated and purified using a non-chromatographic method namely, aqueous two phase extraction for the first time. Optimized process parameters of aqueous two phase extraction (PEG 4000/potassium phosphate of tie line length 18.64% with a phase volume ratio 1.45) resulted in pure C-phycocyanin and allophycocyanin with a purity of 3.23 and 0.74, respectively, in a single extraction. Multiple extractions (two) improved the purity of C-phycocyanin from 3.23 to 4.02. Integration of aqueous two phase extraction with membrane process not only facilitated the separation of phase forming components from the products and also increased the purity of allophycocyanin from 0.74 to 1.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号