首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2022年   4篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   5篇
  2014年   7篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  1999年   1篇
  1992年   2篇
  1987年   1篇
  1984年   1篇
  1981年   2篇
  1975年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
21.
Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs.  相似文献   
22.
Although targeting the V600E activating mutation in the BRAF gene, the most common genetic abnormality in melanoma, has shown clinical efficacy in melanoma patients, response is, invariably, short lived. To better understand mechanisms underlying this acquisition of resistance to BRAF-targeted therapy in previously responsive melanomas, we induced vemurafenib resistance in two V600E BRAF+ve melanoma cell lines, A375 and DM443, by serial in vitro vemurafenib exposure. The resulting approximately 10-fold more vemurafenib-resistant cell lines, A375rVem and D443rVem, had higher growth rates and showed differential collateral resistance to cisplatin, melphalan, and temozolomide. The acquisition of vemurafenib resistance was associated with significantly increased NRAS levels in A375rVem and D443rVem, increased activation of the prosurvival protein, AKT, and the MAPKs, ERK, JNK, and P38, which correlated with decreased levels of the MAPK inhibitor protein, GSTP1. Despite the increased NRAS, whole exome sequencing showed no NRAS gene mutations. Inhibition of all three MAPKs and siRNA-mediated NRAS suppression both reversed vemurafenib resistance significantly in A375rVem and DM443rVem. Together, the results indicate a mechanism of acquired vemurafenib resistance in V600E BRAF+ve melanoma cells that involves increased activation of all three human MAPKs and the PI3K pathway, as well as increased NRAS expression, which, contrary to previous reports, was not associated with mutations in the NRAS gene. The data highlight the complexity of the acquired vemurafenib resistance phenotype and the challenge of optimizing BRAF-targeted therapy in this disease. They also suggest that targeting the MAPKs and/or NRAS may provide a strategy to mitigate such resistance in V600E BRAF+ve melanoma.  相似文献   
23.
The present study was undertaken to investigate the effect of the new formyl peptide receptor 2/lipoxin A4 receptor agonist BML-111 on acetaminophen (APAP)-induced liver injury in mice and explore its possible mechanism(s). Male Swiss albino mice were intraperitoneally injected with BML-111 (1 mg/kg) twice daily for five consecutive days prior to a single intraperitoneal injection of APAP (500 mg/kg). Results have shown that APAP injection caused liver damage as indicated by significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Liver histopathological examination revealed marked necrosis and inflammation. Additionally, APAP decreased activities of hepatic glutathione (GSH) and superoxide dismutase (SOD) with significant increase in the hepatic malondialdehyde (MDA) content. Furthermore, APAP increased serum nitrite/nitrate (NO2 ?/NO3 ? ) level and hepatic tumor necrosis factor alpha (TNF-α). Pretreatment with BML-111 significantly reversed all APAP-induced pathological changes. BML-111 prevented the increase of AST, ALT, and ALP. Also, BML-111 markedly attenuated APAP-induced necrosis and inflammation. It decreased MDA with increase in SOD and GSH. Importantly, BML-111 decreased NO2 ?/NO3 ? level and TNF-α. These findings suggest that BML-111 has hepatoprotective effects against APAP-induced liver injury in mice. Its protective effect may be attributed to its ability to counteract the inflammatory ROS generation and regulate cytokine effects.  相似文献   
24.

Background

Hepatocellular carcinoma (HCC) associated to infection with hepatitis C virus (HCV) has become the fastest-rising cause of cancer-related deaths. Genetic variations may play an important role in the development of HCC in HCV patients. Ghrelin exerts anti-inflammatory, antifibrotic and hepatoprotective effects on chronically injured hepatic tissues. Ghrelin gene shows several single nucleotide polymorphisms (SNPs) including − 604G/A, Arg51Gln, and Leu72Met. Hemochromatosis gene (HFE) mutations namely C282Y and H63D may cause hepatic iron overload, thus increasing the risk of HCC in HCV patients.

Aim

To investigate the association of progression of HCC with ghrelin and HFE gene polymorphisms in HCV Egyptian patients.

Methods

Seventy-nine chronic HCV patients (thirty-nine developed HCC and forty did not), and forty healthy control subjects were included in the study. The polymorphisms were evaluated by PCR/RFLP analysis, and related protein levels were measured by either ELISA or colorimetric assays.

Results

The three tested SNPs on ghrelin gene were detected in the studied groups, only one SNP (Arg51Gln) showed significantly higher GA, AA genotypes and A allele frequencies in hepatitis C patients who developed HCC than in hepatitis C patients without HCC and controls. Of the two mutations studied on HFE gene only H63D heterozygous allele was detected, and its frequency did not statistically differ among studied groups.

Conclusion

Our results suggest that A allele at position 346 of the ghrelin gene is associated with susceptibility to HCC in hepatitis C patients.  相似文献   
25.
Peganum harmala L. is a perennial herbaceous plant and can be a future drug due to its wide medicinal purposes. Despite its economic importance, the molecular genetics of P. harmal have not yet been studied in detail. Genetic diversity of 12 P. harmala genotypes were investigated by using Inter-Simple Sequence Repeats (ISSR), PCR-RFLP of rDNA-ITS, PCR-SSCP of rDNA-ITS and Simple Sequence Repeat (SSR) markers. The level of polymorphism revealed by ITS-SSCP is the lowest, followed by ITS-RFLP then ISSR and the highest polymorphism level was reported for SSR marker. The AMOVA analysis implied that most of the variation occurred within the Populations. A value of inbreeding coefficient Fis estimated by the three co-dominant markers was nearly equal and offer an indication of the partial out-crossing reproductive system of P. harmala. Principal Coordinate Analysis (PCOA) plot revealed a clear pattern of clustering based on the locations of collected plants which coincide with the isolation by distance. The study revealed that ITS-SSCP and ISSR markers respectively were more informative than the other used markers in the assessment of genetic diversity of P. harmala. The results reflect the great diversity of P. harmala and data obtained from this study can be used for future collecting missions.  相似文献   
26.
BACKGROUND: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. CONCLUSION/RELEVANCE: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.  相似文献   
27.
Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.  相似文献   
28.
Monoclonal antibodies (Mab) specific for Staphylococcus aureus nuclease (nuclease) were examined for their capacity to inhibit the enzyme-mediated cleavage of DNA. Within a panel of 22 anti-nuclease Mab produced by hybridoma cell lines derived from SJL/J, A/J or BALB/c mice, only five were capable of modifying nuclease activity. Of the five, only one protected DNA from enzymatic degradation whereas the others reduced the rate of the enzymatic reaction. When mixed together, partially inactivating Mabs were frequently more efficient inhibitors than when used individually. It was shown by competitive binding assay that nuclease could be bound simultaneously to more than one Mab. Mixtures of five inactivating Mabs were able to completely block the nuclease activity. Although the actual mechanism for Mab nuclease inactivation is not known, the present data are consistent with simple steric hindrance for the formation of the DNA-nuclease complex by bulky Mab molecules bound to epitopes close to, but distinct from, nuclease catalytic sites. A mathematical model for Mab binding and inactivation of nuclease, taking into account multiple binding events for one or two Mabs interacting with nuclease, was used to derive affinities and maximum reductions of the enzymatic rate (details on the derivation of the equations and on the hypotheses of the model are given in an appendix). This analysis showed that the observed cooperative effects were dependent on the formation of multi-molecular complexes in which nuclease is bound simultaneously to two (or more) different Mabs. It also shows that the formation of cyclic complexes, if allowed, might result in very high apparent affinities. Since in screening of hybridoma fusions, the probability of finding such pairs of monoclonal antibodies would be low, this phenomenon may explain the fact that no Mab, or mixture of Mabs, matched the polyclonal antisera in capacity to block nuclease enzymatic activity.Abbreviations Nuclease Staphylococcus aureus, Foggi Strain, nuclease - Ig immunoglobulin, Mab(s)monoclonal antibody(ies) - ELISA enzyme linked immunosorbent assay - RIA radioimmunoassay  相似文献   
29.
A NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was isolated and purified over 400-fold from Anacystis nidulans. The enzyme activity responded slowly to rapid changes in ligand (NADP+, isocitrate, Mg2+-ions) or enzyme concentration as well as to rapid changes in temperature. These are properties characteristic of the hysteretic enzymes. In addition, the enzyme activity was subject to product (-ketoglutarate) inhibition. ATP, ADP and CDP also inhibited the enzyme. Unlike several other cyanobacterial enzymes, the isocitrate dehydrogenase of Anacystis is not under redox control.  相似文献   
30.
The effect of nitrate deprivation on cell growth and nucleotide level was studied in Anacystis nidulans. A 10-fold reduction in nitrate level resulted in a drastic slowdown of growth. Upon addition of nitrate to the starving cultures, after a lag period, the cells resumed growth.Nutritional shift-down induced a transitory expansion of the guanosine tetraphosphate (ppGpp) pool, preceeded by a transitory increase in GTP and ATP concentrations. After having reached peak values, the concentration of ppGpp, GTP and ATP dropped to the respective base levels. The expansion of the ppGpp pool was found to be due to an increase in ppGpp synthesis, rather than to a decrease in ppGpp breakdown. After nutritional shift-up, no decrease in the ppGpp level was found.In starving cells, a decrease in free amino acids was observed to occur concomitantly with the expansion of the ppGpp pool. The level of free amino acids started to increase simultaneously with the contraction of the ppGpp pool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号