首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2020年   2篇
  2019年   2篇
  2015年   1篇
  2014年   5篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
11.
A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.  相似文献   
12.

The effects of 50–150 gray electron-beam irradiation on the biofilm-formation ability and cell surface hydrophobicity of the commercial strain, Lactobacillus acidophilus DDS®-1, from Lacto-G (a marketed synbiotic formulation) and the putative probiotic, L. rhamnosus Vahe, were evaluated. No significant changes in cell surface hydrophobicity were found after irradiation, while increases in biofilm-formation abilities were documented for both investigated microorganisms 0.22 ± 0.03 vs. 0.149 ± 0.02 (L. rhamnosus Vahe, 150 Gy) and 0.218 ± 0.021 vs. 0.17 ± 0.012 (L. acidophilus DDS®-1, 150 Gy). Given this, the use of electron-beam irradiation (50–100 Gy) for the treatment of L. rhamnosus Vahe and L. acidophilus DDS®-1 cells may be considered in product sterilization, quality improvement, and packaging practices.

  相似文献   
13.
14.
15.
Abstract Density functional theory computations of heme with ionized propionic acid groups, axially coordinated with two imidazoles, were performed for different mutual orientations of the imidazole planes. Environmental influences from water or protein were considered with a continuum dielectric medium by solving the Poisson equation. In vacuum, optimized geometries yielded imidazole–heme conformations where the NH groups of imidazoles are oriented toward the heme propionic groups in agreement with data from crystal structures of heme proteins. Conformational free-energy dependencies of the mutual orientation of axially ligated imidazoles calculated in protein (=10) and water (=80) environments confirmed the vacuum results, albeit the energy difference between the preferred and the 180° opposite orientations of the imidazole ligand decreased from 3.84 kcal/mol in vacuum to 2.35 and 2.40 kcal/mol in protein and water, respectively. Two main factors determine the imidazole orientation: (1) the direct intramolecular electrostatic interactions of propionic groups with the polar NH groups of imidazole and (2) the electrostatic interaction of the total dipole moment of the imidazole–heme complex with the reaction field. In vacuum, only the first type of interaction is present, while in a dielectric medium the latter effect becomes competitive at high dielectric constant, resulting in a decrease of the orientational preference. Interestingly, the orientational preference of the imidazole axially ligated to heme becomes even more pronounced, if the negatively charged propionates are neutralized by counter charges that mimic salt bridges or protonation of the propionates.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   
16.
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (B(A)), bacteriopheopytin (H(A)), the primary quinone (Q(A)) to the secondary quinone (Q(B)). Although the non-heme iron complex (Fe complex) is located between Q(A) and Q(B), it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of Q(A) and Q(B) in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of Q(A/B) (E(m)(Q(A/B))) and the Fe complex (E(m)(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. E(m)(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic E(m)(Fe) downshift by 230 mV upon formation of Q(A)(-) (but not Q(B)(-)) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   
17.
Photosystem II (PSII) is a membrane-bound protein complex that oxidizes water to produce energized protons, which are used to built up a proton gradient across the thylakoidal membrane in the leafs of plants. This light-driven reaction is catalyzed by withdrawing electrons from the Mn4CaO5-cluster (Mn-cluster) in four discrete oxidation steps [S1 − (S4 / S0)] characterized in the Kok-cycle. In order to understand in detail the proton release events and the subsequent translocation of such energized protons, the protonation pattern of the Mn-cluster need to be elucidated. The new high-resolution PSII crystal structure from Umena, Kawakami, Shen, and Kamiya is an excellent basis to make progress in solving this problem. Following our previous work on oxidation and protonation states of the Mn-cluster, in this work, quantum chemical/electrostatic calculations were performed in order to estimate the pKa of different protons of relevant groups and atoms of the Mn-cluster such as W2, O4, O5 and His337. In broad agreement with previous experimental and theoretical work, our data suggest that W2 and His337 are likely to be in hydroxyl and neutral form, respectively, O5 and O4 to be unprotonated. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   
18.
19.
Borisova  O. V.  Galstyan  A. G.  Olenin  A. Yu.  Lisichkin  G. V.  Zverev  V. V. 《Microbiology》2020,89(2):192-196
Microbiology - Surface-enhanced Raman scattering of bioorganic compounds close to silver nanoparticles may be used for species identification of microbial colonies. The preparations of silver...  相似文献   
20.
Neurophysiology - The plant Teucrium polium (T.p.) possesses a wide range of pharmacological activities due to the presence, in particular, of different phytochemicals, phenols and flavonoids. We...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号