首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1186篇
  免费   143篇
  2021年   21篇
  2020年   15篇
  2019年   16篇
  2018年   17篇
  2017年   19篇
  2016年   25篇
  2015年   32篇
  2014年   46篇
  2013年   47篇
  2012年   56篇
  2011年   63篇
  2010年   36篇
  2009年   33篇
  2008年   51篇
  2007年   44篇
  2006年   39篇
  2005年   39篇
  2004年   57篇
  2003年   35篇
  2002年   41篇
  2001年   49篇
  2000年   35篇
  1999年   36篇
  1998年   21篇
  1997年   23篇
  1996年   19篇
  1994年   13篇
  1993年   19篇
  1992年   29篇
  1991年   22篇
  1990年   32篇
  1989年   24篇
  1988年   15篇
  1987年   24篇
  1986年   11篇
  1985年   10篇
  1984年   19篇
  1983年   20篇
  1982年   9篇
  1980年   11篇
  1979年   13篇
  1978年   10篇
  1976年   8篇
  1975年   7篇
  1973年   9篇
  1971年   8篇
  1969年   9篇
  1967年   6篇
  1966年   6篇
  1943年   6篇
排序方式: 共有1329条查询结果,搜索用时 15 毫秒
91.
92.
Gallagher SC  Gao ZH  Li S  Dyer RB  Trewhella J  Klee CB 《Biochemistry》2001,40(40):12094-12102
We have used site-directed mutagenesis, flow dialysis, and Fourier transform infrared (FTIR) spectroscopy to study Ca(2+)-binding to the regulatory component of calcineurin. Single Glu-Gln(E --> Q) mutations were used to inactivate each of the four Ca(2+)-binding sites of CnB in turn, generating mutants Q1, Q2, Q3, and Q4, with the number indicating which Ca(2+) site is inactivated. The binding data derived from flow dialysis reveal two pairs of sites in the wild-type protein, one pair with very high affinity and the other with lower affinity Ca(2+)-binding sites. Also, only three sites are titratable in the wild-type protein because one site cannot be decalcified. Mutation of site 2 leaves the protein with only two titratable sites, while mutation of sites 1, 3, or 4 leave three titratable sites that are mostly filled with 3 Ca(2+) equiv added. The binding data further show that each of the single-site mutations Q2, Q3, and Q4 affects the affinities of at least one of the remaining sites. Mutation in either of sites 3 or 4 results in a protein with no high-affinity sites, indicating communication between the two high-affinity sites, most likely sites 3 and 4. Mutation in site 2 decreases the affinity of all three remaining sites, though still leaving two relatively high-affinity sites. The FTIR data support the conclusions from the binding data with respect to the number of titratable sites as well as the impact of each mutation on the affinities of the remaining sites. We conclude therefore that there is communication between all four Ca(2+)-binding sites. In addition, the Ca(2+) induced changes in the FTIR spectra for the wild-type and Q4 mutant are most similar, suggesting that the same three Ca(2+)-binding sites are being titrated, i.e., site 4 is the very high-affinity site under the conditions of the FTIR experiments.  相似文献   
93.
In this study, two alternatively spliced forms of the mouse death-associated protein kinase (DAPK) have been identified and their roles in apoptosis examined. The mouse DAPK-alpha sequence is 95% identical to the previously described human DAPK, and it has a kinase domain and calmodulin-binding region closely related to the 130-150 kDa myosin light chain kinases. A 12-residue extension of the carboxyl terminus of DAPK-beta distinguishes it from the human and mouse DAPK-alpha. DAPK phosphorylates at least one substrate in vitro and in vivo, the myosin II regulatory light chain. This phosphorylation occurs preferentially at Ser-19 and is stimulated by calcium and calmodulin. The mRNA encoding DAPK is widely distributed and detected in mouse embryos and most adult tissues, although the expression of the encoded 160-kDa DAPK protein is more restricted. Overexpression of DAPK-alpha, the mouse homolog of human DAPK has a negligible effect on tumor necrosis factor (TNF)-induced apoptosis. Overexpression of DAPK-beta has a strong cytoprotective effect on TNF-treated cells. Biochemical analysis of TNF-treated cell lines expressing mouse DAPK-beta suggests that the cytoprotective effect of DAPK is mediated through both intrinsic and extrinsic apoptotic signaling pathways and results in the inhibition of cytochrome c release from the mitochondria as well as inhibition of caspase-3 and caspase-9 activity. These results suggest that the mouse DAPK-beta is a negative regulator of TNF-induced apoptosis.  相似文献   
94.
Using the fruit fly Drosophila melanogaster as model host, we have identified mutants of the bacterium Pseudomonas aeruginosa with reduced virulence. Strikingly, all strains strongly impaired in fly killing also lacked twitching motility; most such strains had a mutation in pilGHIJKL chpABCDE, a gene cluster known to be required for twitching motility and potentially encoding a signal transduction system. The pil chp genes appear to control the expression of additional virulence factors, however, since the wild-type fly-killing phenotype of a subset of mutants isolated on the basis of their compact colony morphology indicated that twitching motility itself was not required for full virulence in the fly.  相似文献   
95.
Activation of myosin II by myosin light chain kinase (MLCK) produces the force for many cellular processes including muscle contraction, mitosis, migration, and other cellular shape changes. The results of this study show that inhibition or potentiation of myosin II activation via over-expression of a dominant negative or wild type MLCK can delay or accelerate tumor necrosis factor-alpha (TNF)-induced apoptotic cell death in cells. Changes in the activation of caspase-8 that parallel changes in regulatory light chain phosphorylation levels reveal that myosin II motor activities regulate TNF receptor-1 (TNFR-1) signaling at an early step in the TNF death signaling pathway. Treatment of cells with either ionomycin or endotoxin (lipopolysaccharide) leads to activation of myosin II and increased translocation of TNFR-1 to the plasma membrane independent of TNF signaling. The results of these studies establish a new role for myosin II motor activity in regulating TNFR-1-mediated apoptosis through the translocation of TNFR-1 to or within the plasma membrane.  相似文献   
96.
97.
2-N-Pentyl-4-pentynoic acid [pentyl-4-yn-valproic acid (VPA)] is an analogue of valproic acid that induces neuritogenesis and increases neural cell adhesion molecule (NCAM) prevalence in cultured neural cells. As memory consolidation involves synapse growth, aided by cell adhesion molecule function, we determined whether or not pentyl-4-yn-VPA had cognition-enhancing properties. Pentyl-4-yn-VPA (16-85 mg/kg) significantly improved water maze learning and task retention when given prior to each training session. Acute administration of pentyl-4-yn-VPA also influenced memory consolidation processes as, when given at 3 h post-passive avoidance training, the amnesia induced by scopolamine given 6 h post-training was prevented in a dose-dependent manner. Chronic administration of pentyl-4-yn-VPA (16.8 or 50.4 mg/kg) also significantly reduced escape latencies in the water maze task, 24 h following the last drug administration. This improved spatial learning was accompanied by enhanced neuroplasticity as the expression of NCAM polysialylated neurons in the infragranular zone of the dentate gyrus and in layer II of the perirhinal and piriform cortex was increased significantly following chronic drug treatment. The cognition-enhancing qualities of pentyl-4-yn-VPA, combined with its ability to attenuate the age-related loss of the NCAM polysialylation state, suggest that it may effectively slow the onset of cognitive decline.  相似文献   
98.
99.
Heme oxygenase-2 is neuroprotective in cerebral ischemia   总被引:20,自引:0,他引:20       下载免费PDF全文
Heme oxygenase (HO) is believed to be a potent antioxidant enzyme in the nervous system; it degrades heme from heme-containing proteins, giving rise to carbon monoxide, iron, and biliverdin, which is rapidly reduced to bilirubin. The first identified isoform of the enzyme, HO1, is an inducible heat-shock protein expressed in high levels in peripheral organs and barely detectable under normal conditions in the brain, whereas HO2 is constitutive and most highly concentrated in the brain. Interestingly, although HO2 is constitutively expressed, its activity can be modulated by phosphorylation. We demonstrated that bilirubin, formed from HO2, is neuroprotectant, as neurotoxicity is augmented in neuronal cultures from mice with targeted deletion of HO2 (HO2(-/-)) and reversed by low concentrations of bilirubin. We now show that neural damage following middle cerebral artery occlusion (MCAO) and reperfusion, a model of focal ischemia of vascular stroke, is substantially worsened in HO2(-/-) animals. By contrast, stroke damage is not significantly altered in HO1(-/-) mice, despite their greater debility. Neural damage following intracranial injections of N-methyl-d-aspartate (NMDA) is also accentuated in HO2(-/-) animals. These findings establish HO2 as an endogenous neuroprotective system in the brain whose pharmacologic manipulation may have therapeutic relevance.  相似文献   
100.
The interaction of basic fibroblast growth factor (bFGF) with heparan sulfate (HS)/heparin has been shown to strongly enhance the activity of the growth factor although the mechanism of activation is unclear. We have addressed the issue of the minimal stoichiometry of an active HS oligosaccharide.bFGF complex by chemically cross-linking the two components to form novel covalent conjugates. The cross-linking procedure produced both monomeric and dimeric bFGF. oligosaccharide complexes, which were purified to homogeneity. Dimer conjugates were shown to have been formed as a result of disulfide bridging of monomer conjugates. These monomer conjugates were subsequently found to be biologically active in a mitogenesis assay. We therefore conclude that a monomeric bFGF.oligosaccharide complex is the minimal functional unit required for mitogenic stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号