首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   136篇
  906篇
  2019年   6篇
  2018年   14篇
  2017年   9篇
  2016年   22篇
  2015年   36篇
  2014年   37篇
  2013年   44篇
  2012年   39篇
  2011年   38篇
  2010年   33篇
  2009年   23篇
  2008年   25篇
  2007年   35篇
  2006年   27篇
  2005年   28篇
  2004年   26篇
  2003年   29篇
  2002年   26篇
  2001年   23篇
  2000年   27篇
  1999年   30篇
  1998年   16篇
  1997年   13篇
  1996年   16篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   12篇
  1991年   12篇
  1990年   8篇
  1989年   10篇
  1988年   8篇
  1987年   12篇
  1986年   11篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1982年   10篇
  1981年   17篇
  1980年   8篇
  1979年   11篇
  1978年   13篇
  1977年   8篇
  1976年   10篇
  1975年   6篇
  1974年   6篇
  1972年   12篇
  1970年   12篇
  1967年   6篇
  1966年   5篇
排序方式: 共有906条查询结果,搜索用时 15 毫秒
91.
92.
The magnitude and character of adenovirus serotype 5 (Ad5)-specific T cells were determined in volunteers with and without preexisting neutralizing antibodies (NAs) to Ad5 who received replication-defective Ad5 (rAd5)-based human immunodeficiency virus vaccines. There was no correlation between T-cell responses and NAs to Ad5. There was no increase in magnitude or activation state of Ad5-specific CD4+ T cells at time points where antibodies to Ad5 and T-cell responses to the recombinant gene products could be measured. These data indicate that rAd5-based vaccines containing deletions in the E1, E3, and E4 regions do not induce appreciable expansion of vector-specific CD4+ T cells.Replication-defective adenoviruses (rAd) have been engineered to provide high levels of expression of foreign inserts with minimum expression of adenovirus proteins, making them excellent candidates for vaccine and gene therapy applications (3, 16). Despite promising immunogenicity, a prophylactic vaccine trial of a serotype 5 rAd (rAd5) vector expressing human immunodeficiency virus (HIV) Gag, Pol, and Nef genes (Step trial) was recently halted due to an increase in HIV infections among volunteers who had preexisting neutralizing antibodies (NAs) to Ad5 (7). This finding raises the possibility that the presence of Ad5-specific T-cell responses (specifically CD4+ T-cell responses) in subjects with preexisting Ad5 NAs could be boosted by rAd5 vaccines, thereby providing an expanded susceptible target cell population that could be more easily infected by HIV. If this mechanism were operative, it would have broad implications for the future use of rAd viruses, and indeed other virus vectors, as vaccines or therapeutic agents within HIV-susceptible populations (2, 12, 15). We therefore measured the frequency, magnitude, and activation status of rAd5-specific T cells in HIV-uninfected volunteers who had received rAd5-based HIV vaccines in the presence or absence of preexisting NAs to Ad5.We studied 31 volunteers enrolled in two NIAID Institutional Review Board-approved phase I clinical trials of rAd5-based HIV vaccines. VRC 006 was a dose escalation study evaluating a single inoculation of a rAd5 mixture expressing EnvA, EnvB, EnvC, and fusion protein Gag/PolB at 109, 1010, and 1011 total particle units (10). VRC 008 evaluated DNA priming by needle and syringe or Biojector, followed by rAd5 boosting. Both studies enrolled healthy, HIV-uninfected adults; used the same rAd5 products; and evaluated immunogenicity on the day of and 4 weeks after rAd5 immunization. Both of these trials involved rAd5 products that contained deletions in the E1, E3, and E4 regions (8, 10).NAs to Ad5 were determined for all volunteers as previously described (19). A 90% NA titer of 12 or more was considered positive and taken as evidence of preexisting humoral immunity to Ad5. Volunteers were chosen for assessment of Ad5-specific T-cell responses based upon the availability of peripheral blood mononuclear cell samples at key time points and the presence or absence of preexisting NAs to Ad5. Only volunteers who received the vaccine (not the placebo) were included. Table Table11 lists the volunteers who were tested for Ad5-specific T-cell responses and their NA titers to Ad5 before and after rAd5 vaccination. All volunteers, except for one (volunteer 12) who had a less-than-maximum NA titer to Ad5 before vaccination, had an increase in titer by 4 weeks after vaccination, indicating the successful “take” of the rAd5-based vaccine. There was no correlation between rAd5 dose and increase in Ad5 NA titer.

TABLE 1.

Ad5 serostatus before and after vaccination
VolunteerPrior DNA immunizationrAd5 dose (PUa)Ad5 NA titer
PrevaccinePostvaccine
1No1011<12739
2No1011<12834
3No1011<124,787
4No1011<12806
5No1011<121,033
6No1010<12130
7No1010<121,354
8Yes1010<121,387
9Yes1010<12575
10Yes1010<12170
11Yes1010<12>8,748
12Yes1010<12<12
13No101130>8,748
14No10946>8,748
15No10970328
16No1010176>8,748
17No10104786,198
18No1092,472>8,748
19No1093,502>8,748
20No10104,820>8,748
21No1095,078>8,748
22No10116,162>8,748
23No109>8,748>8,748
24No1011>8,748>8,748
25Yes1010643>8,748
26Yes1010942>8,748
27Yes10101,510>8,748
28Yes10101,611>8,748
29Yes10102,934>8,748
30Yes1010>8,748>8,748
31Yes1010>8,748>8,748
Open in a separate windowaPU, particle units.HIV-specific T-cell responses were measured by multiparameter flow cytometry after 6 h of stimulation with peptides (15-mers overlapping by 11) corresponding to the HIV EnvA protein (one of the vaccine inserts expressed in the Ad5 vectors), as previously described (13). Overlapping peptides corresponding to the major Ad5 surface protein (hexon), the Ad5 early regulatory protein (E2A), and Ad5 ORF1, -2, and -3 proteins were used to assess Ad5-specific T-cell responses, and additional markers of cell viability (ViViD), T-cell memory (CD45RO and CD27), and activation/division (CCR5, CD38, HLA-DR, and Ki67) were added to the panel for these assessments. Antibodies and fluorochromes used in this panel were CCR5-Cy7-phycoerythrin (PE), CD38-allophycocyanin, Ki67-fluorescein isothiocyanate, and CD3-Cy7-allophycocyanin, all from BD PharMingen; CD8-Cy55-PE from BD Biosciences; CD27-Cy5-PE and CD45RO-Texas Red-PE, both from Beckman Coulter; CD4-Cy5.5-PE from Caltag; CD14- and CD19-PacificBlue, CD57-QDot545, and HLA-DR-Alexa680, conjugated according to standard protocols [http://drmr.com/abcon/index.html]); gamma interferon-PE and interleukin-2-PE from BD Biosciences; and a violet amine dye from Invitrogen. Cells were analyzed on an LSRII instrument (Becton Dickinson), and data analysis was performed using FlowJo, version 8.1.1 (TreeStar). The gating strategy is shown in Fig. Fig.1A1A.Open in a separate windowFIG. 1.CD4+ and CD8+ T-cell responses to Ad5. (A) Gating tree used to determine antigen-specific T-cell frequencies. Single CD3+ ViViD CD14 CD19 cells were gated on CD4 or CD8 cells. Naïve CD27+ CD45RO cells were gated out, and the frequency of cells expressing gamma interferon (IFNg) and/or interleukin-2 (IL2) was determined. FSC-A, forward scatter area; FSC-H, forward scatter height; SSC-A, side scatter area. (B) Frequencies of CD4+ and CD8+ T-cell responses after stimulation with Ad5 hexon or E2A peptides were plotted against the prevaccination Ad5 NA titer. The prevaccine T-cell response was used. (C) Frequencies of CD4+ and CD8+ T-cell responses to Ad5 hexon, E2A, and HIV EnvA before and 4 weeks after rAd5 vaccination are shown for subjects with (Ad5 NA titer of >12) and without (Ad5 NA titer of <12) preexisting NAs to Ad5. Boxed areas represent interquartile ranges, and horizontal lines represent medians.Previously, we had found no T-cell responses to Ad5 ORF1, -2, or -3, so data from these antigen stimulations are not shown. As shown in Fig. Fig.1B,1B, T-cell responses to Ad5 hexon and E2A were detected, but there was no association between the NA response to Ad5 and the T-cell responses to these Ad5 proteins. Volunteers with an absence of NAs to Ad5 often had very strong CD4+ and CD8+ T-cell responses to Ad5 proteins. This probably reflects the degree of protein sequence homology between different adenovirus serotypes (11) and suggests that T-cell responses to adenoviruses may be significantly cross-reactive, while NAs are serotype specific. It also indicates that the NA response to Ad5 cannot be used as a surrogate for either a CD4+ or a CD8+ T-cell response to that adenovirus serotype.We next asked whether Ad5-specific T-cell responses were boosted by a single rAd5 vaccination in subjects with or without preexisting NAs to Ad5. At the time point 4 weeks after vaccination, there was clear evidence of boosting of the insert-specific (EnvA) CD4+ and CD8+ T-cell responses in volunteers with and without preexisting NAs to Ad5 (Fig. (Fig.1C).1C). The results of the Ad5-specific responses were consistent across volunteers who had received prior DNA immunization (VRC 008) and those who had not (VRC 006), so the results are combined in Fig. Fig.1C1C and show no increase in Ad5 hexon- or E2A-specific CD4+ T-cell responses after rAd5 immunization irrespective of Ad5 NA status. There was evidence of an increase in the CD8+ T-cell response to Ad5 hexon (P = 0.004 by paired t test), but not that to E2A, after rAd5 vaccination. These results, while showing evidence of adenovirus-specific CD8+ T-cell boosting by rAd5 vaccination, do not indicate an expansion of Ad5-specific CD4+ T cells that could serve as a substrate for HIV infection in subjects with or without NAs to Ad5.Having failed to demonstrate an expansion of Ad5-specific CD4+ T cells after vaccination, we assessed whether the activation profile of the unexpanded Ad5-specific CD4+ T cells was changed by vaccination. The gating tree is shown in Fig. Fig.2A.2A. Ad5 hexon- and E2A-specific CD4+ T cells expressed activation markers CCR5, CD38, and HLA-DR and a marker of recent cell division, Ki67, more frequently than did total memory CD4+ T cells (Fig. (Fig.2B).2B). However, none of these markers were significantly increased on total or Ad5-specific CD4+ T cells after vaccination in volunteers with or without preexisting NAs to Ad5.Open in a separate windowFIG. 2.Vaccine-induced activation of Ad5-specific CD4+ T cells. (A) Total CD4+ memory cells or Ad5-specific CD4+ memory cells (as gated in Fig. Fig.1A)1A) were further defined by expression of Ki67, CD38, CCR5, and HLA-DR. (B) Percentages of Ad5 hexon-specific cells, E2A-specific cells, or total memory CD4+ T cells that express CCR5, CD38, HLA-DR, or Ki67 before and 4 weeks after rAd5 vaccination are shown for subjects with (Ad5 NA titer of >12) (left) and without (Ad5 NA titer of >12) (right) preexisting NAs to Ad5. The phenotype was assessed only for those responders for whom at least 10 cytokine-positive events were counted. None of the comparisons of pre- and postvaccination marker expression were significant at a P value of 0.02 by paired t test. Boxed areas represent interquartile ranges, and horizontal lines represent medians.Expansion of Ad5-specific T cells after rAd5-based vaccination or gene therapy has been reported by others (14, 20, 21). Those studies evaluated Ad5-specific responses to rAd5 vectors with only the adenovirus E1 gene deleted (as used in the Step trial vaccines). The vectors used here contained deletions of the adenovirus E1, E3, and E4 genes (8, 10). While adenovirus gene deletions can render the vectors replication defective (6, 9), they do not necessarily completely shut off all adenovirus protein expression (20, 21). To demonstrate the importance of E4 deletions in limiting expression of adenovirus gene products, we measured the level of adenovirus protein synthesis in infected A549 cells as previously described (1, 4, 5). Cells were infected with adenovirus vectors with E1 and E3 deletions or with E1, E3, and E4 deletions at the same multiplicity of infection (10 focus-forming units per cell). At 24 h postinfection, [35S]methionine was added for 1 h. Levels of total and adenovirus protein synthesis in the infected and mock-infected cells were compared (Fig. (Fig.3).3). Adenovirus early protein single-stranded DNA binding protein, as well as late gene products hexon, penton, and fiber, was immunoprecipitated, fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and resolved by autoradiography. The results show that the amount of newly synthesized adenovirus proteins in cells infected with adenovirus with E1, E3, and E4 deletions is significantly lower than that for an adenovirus vector with E1 and E3 deletions. Therefore, our inability to detect a vaccine-induced increase in the frequency and character of the Ad5-specific T-cell response could relate to the very low levels of adenovirus proteins that were probably expressed in vivo by the rAd5 vectors with multiple deletions.Open in a separate windowFIG. 3.Ad5 protein expression in vitro after infection with different Ad5 vectors. A549 cells were infected with adenovirus vectors with E1 and E3 deletions or with E1, E3, and E4 deletions and [35S]methionine labeled, and levels of total and adenovirus protein synthesis in the infected and mock-infected cells were compared after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Markers for the adenovirus early protein single-stranded DNA binding protein (DBP) and capsid proteins hexon, penton base, and fiber are shown.We were therefore unable to demonstrate (i) that Ad5-specific CD4+ T cells were restricted to subjects with preexisting Ad5 NAs, (ii) that rAd5 vaccination expanded or increased the activation of Ad5-specific CD4+ T cells, or (iii) that there was a substantial effect on the magnitude or character of the Ad5-specific CD4+ T-cell response to vaccination based upon preexisting NAs to Ad5. While the kinetics of Ad5-specific T-cell responses after rAd5-based vaccination are not known, it is clear that insert-specific responses are increased at 4 weeks after vaccination and subsequently contract (10). It is therefore reasonable to assume that if Ad5-specific responses were similarly affected, they would be detected at the 4-week-postvaccination time point.It is possible that rAd5 vaccines expand a preexisting mucosal T-cell response to Ad5 that is not reflected within the blood. While we do not have mucosal samples from our vaccine volunteers to directly address this possibility, it is likely that expansion of a mucosal response would be reflected to some degree within the blood.The mechanism underlying the increase in HIV infections in vaccinees with NAs to Ad5 in the Step trial is yet to be determined (2, 7, 12, 15, 17). Confounding factors and alternative hypotheses have recently been proposed to account for the increased acquisition (7, 12, 15, 18). Until there is a better understanding of the processes involved, future studies of rAd5-based products should proceed with appropriate safety considerations and monitoring of adenovirus-specific responses. In addition, the use of vaccine regimens involving single injections of vectors with multiple deletions may help mitigate risk.  相似文献   
93.
The effect of acetylene on the activity of the three types of hydrogenase from the anaerobic sulfate reducing bacteria has been investigated. The (Fe) hydrogenase is resistant to inhibition by acetylene while the nickel-containing hydrogenases are inhibited by acetylene with the (NiFe) hydrogenase being 10-50 fold more sensitive than the (NiFeSe) hydrogenase. In addition the Ni(III) EPR signal (g approximately 2.3) of the "as isolated" (NiFe) hydrogenase was significantly decreased in intensity upon exposure to acetylene.  相似文献   
94.
Potentiometric titration followed by e.p.r. measurements were used to determine the midpoint reduction potentials of the redox centres of a molybdenum-containing iron-sulphur protein previously isolated from Desulfovibrio gigas, a sulphate-reducing bacterium (Moura, Xavier, Bruschi, Le Gall, Hall & Cammack (1976) Biochem. Biophys. Res. Commun. 728 782-789; Moura, Xavier, Bruschi, Le Gall & Cabral (1977) J. Less Common Metals 54, 555-562). The iron-sulphur centres could readily be distinguished into three types by means of g values, temperature effect, oxidation-reduction potential values and reduction rates. The type-I Fe-S centres are observed at 77 K. They show mid-point potential values of -260mV (Fe-S type IA) and -440 mV (Fe-S type IB). Centres of types IA and IB appear to have similar spectra at 77 K and 24 K. The Fe-S type-II centres are only observed below 65 K and have a midpoint potential of -28mV. Long equilibration times (30 min) with dye mediators under reducing conditions were necessary to observe the very slow equilibrating molybdenum signals. The potential values associated with this signal were estimated to be approx. -415 mV for Mo(VI)/Mo(V) and-530mV for Mo(V)/Mo(IV).  相似文献   
95.
Generic and specific determination among the Laurencia complex is a challenging task. DNA barcoding combined with phenotypic investigations are mandatory for species differentiation. In this study, two morphologically different members of the Laurencia complex were investigated using untargeted 1H‐NMR‐based metabolomics. Twenty‐one population samples were collected in order to evaluate both temporal and geographical homogeneity. Data obtained from 1H‐NMR analysis followed by statistical analysis allowed a clear separation of all the samples into two groups. DNA mitochondrial tests confirmed this pattern and identified the two species as Laurenciella sp. and Laurencia obtusa. In addition, metabolites responsible of this discrimination were investigated directly in crude extracts by 13C‐NMR using an in‐house computer‐assisted method. The combination of both untargeted (1H) and targeted (13C) NMR‐based metabolomic approaches proves to be a powerful and complementary approach to discriminate species from the Laurencia complex.  相似文献   
96.
Positive-sense single-stranded RNA viruses have developed strategies to exploit cellular resources at the expense of host mRNAs. The genomes of these viruses display a variety of structures at their 5' and 3' ends that differentiate them from cellular mRNAs. Despite this structural diversity, viral RNAs are still circularized by juxtaposition of their 5' and 3' ends, similar to the process used by cellular mRNAs. Also reminiscent of the mechanisms used by host mRNAs, translation of viral RNAs involves the recruitment of translation initiation factors. However, the roles played by these factors likely differ from those played by cellular mRNAs. In keeping with the general parsimony typical of RNA viruses, these host factors also participate in viral RNA replication. However, the dual use of host factors requires that viral RNA template utilization be regulated to avoid conflict between replication and translation. The molecular composition of the large ribonucleoprotein complexes that form the viral RNA replication and translation machineries likely evolves over the course of infection to allow for switching template use from translation to replication.  相似文献   
97.
98.
The importance of the cyanobacteria Prochlorococcus and Synechococcus in marine ecosystems in terms of abundance and primary production can be partially explained by ecotypic differentiation. Despite the dominance of eukaryotes within photosynthetic picoplankton in many areas a similar differentiation has never been evidenced for these organisms. Here we report distinct genetic [rDNA 18S and internal transcribed spacer (ITS) sequencing], karyotypic (pulsed-field gel electrophoresis), phenotypic (pigment composition) and physiological (light-limited growth rates) traits in 12 Ostreococcus strains (Prasinophyceae) isolated from various marine environments and depths, which suggest that the concept of ecotype could also be valid for eukaryotes. Internal transcribed spacer phylogeny grouped together four deep strains isolated between 90 m and 120 m depth from different geographical origins. Three deep strains displayed larger chromosomal bands, different chromosome hybridization patterns, and an additional chlorophyll (chl) c-like pigment. Furthermore, growth rates of deep strains show severe photo-inhibition at high light intensities, while surface strains do not grow at the lowest light intensities. These features strongly suggest distinct adaptation to environmental conditions encountered at surface and the bottom of the oceanic euphotic zone, reminiscent of that described in prokaryotes.  相似文献   
99.
Gall A  Ellervee A  Robert B  Freiberg A 《FEBS letters》2004,560(1-3):221-225
The effect of application of high pressure on the carotenoid-containing bacterial reaction centre from Rhodobacter sphaeroides strain 2.4.1 was studied, and compared to recent experiments performed on its carotenoid-less counterpart, isolated from strain R26.1. Our results indicate that the cavity created by the absence of carotenoid contributes to localised differences in protein compressibility when using the intrinsic chromophores as molecular probes. Differential stability of the electronic transitions of the primary electron donor under high hydrostatic pressure is observed, dependent on the presence of the carotenoid cofactor. This suggests that the transition intensity loss is induced by a slight change of the primary electron donor structure, allowed by the void created by the absence of the carotenoid molecule.  相似文献   
100.
Crystal structures of C-terminal despentapeptide nitrite reductase (NiRc-5) from Achromobacter cycloclastes were determined from 1.9 to 2.3A at pH 5.0, 5.4, and 6.2. NiRc-5, that has lost about 30% activity, is found to possess quite similar trimeric structures as the native enzyme. Electron density and copper content measurements indicate that the activity loss is not caused by the release of type 2 copper (T2Cu). pH-profile structural comparisons with native enzyme reveal that the T2Cu active center in NiRc-5 is perturbed, accounting for the partial loss of enzyme activity. This perturbation likely results from the less constrained conformations of two catalytic residues, Asp98 and His255. Hydrogen bonding analysis shows that the deletion of five residues causes a loss of more than half the intersubunit hydrogen bonds mediated by C-terminal tail. This study shows that the C-terminal tail plays an important role in controlling the conformations around the T2Cu site at the subunit interface, and helps keep the optimum microenvironment of active center for the full enzyme activity of AcNiR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号