首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1333篇
  免费   86篇
  国内免费   2篇
  2023年   3篇
  2022年   14篇
  2021年   22篇
  2020年   11篇
  2019年   24篇
  2018年   27篇
  2017年   19篇
  2016年   33篇
  2015年   54篇
  2014年   57篇
  2013年   79篇
  2012年   102篇
  2011年   108篇
  2010年   82篇
  2009年   75篇
  2008年   69篇
  2007年   89篇
  2006年   77篇
  2005年   79篇
  2004年   79篇
  2003年   80篇
  2002年   60篇
  2001年   11篇
  2000年   10篇
  1999年   15篇
  1998年   23篇
  1997年   19篇
  1996年   11篇
  1995年   18篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1974年   2篇
  1935年   1篇
排序方式: 共有1421条查询结果,搜索用时 281 毫秒
61.
Unisex pheromone detectors and pheromone-binding proteins in scarab beetles   总被引:3,自引:0,他引:3  
Olfaction was studied in two species of scarab beetle, Anomala octiescostata and Anomala cuprea (Coleoptera: Scarabaeidae: Rutelinae), which are temporarily isolated and use the same sex pheromone compounds, (R)-buibuilactone and (R)-japonilure. Single sensillum recordings in A. octiescostata revealed highly sensitive olfactory receptor neurons (ORNs) (threshold <1 pg) that were tuned to the detection of the green leaf volatile compound (Z)-3-hexenyl acetate. As opposed to similar ORNs in another scarab species, Phyllopertha diversa, in A. octiescostata a diazo analogue elicited much lower neuronal responses than the natural ligand. Detectors for other floral and leaf compounds were also characterized. Extremely stereoselective ORNs tuned to sex pheromone were identified in male and female antennae. Biochemical investigations showed that, in A. octiescostata and A. cuprea, the pheromone-binding proteins (PBPs) isolated from male antennae were identical to PBPs obtained from female antennae. AoctPBP and AcupPBP had seven different amino acid residues. Binding of AoctPBP to (R)-japonilure is shown. PdivOBP1, which is also known to bind to (R)-japonilure, differed from AcupPBP in only two amino acid residues, one at the N-terminus and the other near the C-terminus. The structural features of the Bombyx mori PBP are compared with the sequences of eight known scarab odorant-binding proteins.  相似文献   
62.
The mechanisms underlying the phenomenon of genomic imprinting remain poorly understood. In one instance, a differentially methylated imprinting control region (ICR) at the H19 locus has been shown to involve a methylation-sensitive chromatin insulator function that apparently partitions the neighboring Igf2 and H19 genes in different expression domains in a parent of origin-dependent manner. It is not known, however, if this mechanism is unique to the Igf2/H19 locus or if insulator function is a common feature in the regulation of imprinted genes. To address this question, we have studied an ICR in the Kcnq1 locus that regulates long range repression on the paternally derived p57Kip2 and Kcnq1 alleles in an imprinting domain that includes Igf2 and H19. We show that this ICR appears to possess a unidirectional chromatin insulator function in somatic cells of both mesodermal and endodermal origins. Moreover, we document that CpG methylation regulates this insulator function suggesting that a methylation-sensitive chromatin insulator is a common theme in the phenomenon of genomic imprinting.  相似文献   
63.
Florova G  Kazanina G  Reynolds KA 《Biochemistry》2002,41(33):10462-10471
Malonyl acyl carrier protein (ACP) is used as an extender unit in each of the elongation steps catalyzed by the type II dissociated fatty acid synthase (FAS) and polyketide synthase (PKS) of Streptomyces glaucescens. Initiation of straight-chain fatty acid biosynthesis by the type II FAS involves a direct condensation of acetyl-CoA with this malonyl-ACP to generate a 3-ketobutyryl-ACP product and is catalyzed by FabH. In vitro experiments with a reconstituted type II PKS system in the absence of FabH have previously shown that the acetyl-ACP (generated by decarboxylation of malonyl-ACP), not acetyl-CoA, is used to initiate tetracenomycin C (TCM C) biosynthesis. We have shown that sgFabH activity is present in S. glaucescens fermentations during TCM C production, suggesting that it could contribute to initiation of TCM C biosynthesis in vivo. Isotope incorporation studies with [CD3]acetate and [13CD3]acetate demonstrated significant intact retention of three deuteriums into the starter unit of palmitate and complete washout of deuterium label into the starter unit of TCM C. These observations provide evidence that acetyl-CoA is not used directly as a starter unit for TCM C biosynthesis in vivo and argue against an involvement of FabH in this process. Consistent with this conclusion, assays of the purified recombinant sgFabH with acetyl-CoA demonstrated activity using malonyl-ACP generated from either FabC (the S. glaucescens FAS ACP) (k(cat) 42.2 min(-1), K(m) 4.5 +/- 0.3 microM) or AcpP (the E. coli FAS ACP) (k(cat) 7.5 min(-1), K(m) 6.3 +/- 0.3 microM) but not TcmM (the S. glaucescens PKS ACP). In contrast, the sgFabD which catalyzes conversion of malonyl-CoA to malonyl-ACP for fatty acid biosynthesis was shown to be active with TcmM (k(cat) 150 min(-1), K(m) 12.2 +/- 1.2 microM), AcpP (k(cat) 141 min(-1), K(m) 13.2 +/- 1.6 microM), and FabC (k(cat) 560 min(-1), K(m) 12.7 +/- 2.6 microM). This enzyme was shown to be present during TCM C production and could play a role in generating malonyl-ACP for both processes. Previous demonstrations that the purified PKS ACPs catalyze self-malonylation and that a FabD activity is not required for polyketide biosynthesis are shown to be an artifact of the expression and purification protocols. The relaxed ACP specificity of FabD and the lack of a clear alternative are consistent with a role of FabD in providing malonyl-ACP precursors for PKS as well as FAS processes. In contrast, the ACP specificity of FabH, isotope labeling studies, and a demonstrated alternative mechanism for initiation of the PKS process provide unequivocal evidence that FabH is involved only in the FAS process.  相似文献   
64.
Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.  相似文献   
65.
Boophilus annulatus, Hyalomma excavatum and Rhipicephalus sanguineus ticks were shown to be susceptible to different entomopathogenic fungi under laboratory conditions. Comparative results of bioassays using five different fungal species showed that some strains of Metarhizium anisopliae are highly pathogenic against various tick stages tested. In contrast to their activity against insects, fungi also affected tick eggs. All tested tick stages including those feeding on a host were found to be susceptible to these fungi, except for adult H. excavatum ticks, which were relatively resistant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
66.
A hypothetical protein encoded by the gene YjeE of Haemophilus influenzae was selected as part of a structural genomics project for X-ray analysis to assist with the functional assignment. The protein is considered essential to bacteria because the gene is present in virtually all bacterial genomes but not in those of archaea or eukaryotes. The amino acid sequence shows no homology to other proteins except for the presence of the Walker A motif G-X-X-X-X-G-K-T that indicates the possibility of a nucleotide-binding protein. The YjeE protein was cloned, expressed, and the crystal structure determined by the MAD method at 1.7-A resolution. The protein has a nucleotide-binding fold with a four-stranded parallel beta-sheet flanked by antiparallel beta-strands on each side. The topology of the beta-sheet is unique among P-loop proteins and has features of different families of enzymes. Crystallization of YjeE in the presence of ATP and Mg2+ resulted in the structure with ADP bound in the P-loop. The ATPase activity of YjeE was confirmed by kinetic measurements. The distribution of conserved residues suggests that the protein may work as a "molecular switch" triggered by ATP hydrolysis. The phylogenetic pattern of YjeE suggests its involvement in cell wall biosynthesis.  相似文献   
67.
There has been intense interest in the development of factor Xa inhibitors for the treatment of thrombotic diseases. Our laboratory has developed a series of novel non-amidine inhibitors of factor Xa. This paper presents two crystal structures of compounds from this series bound to factor Xa. The first structure is derived from the complex formed between factor Xa and compound 1. Compound 1 was the first non-amidine factor Xa inhibitor from our lab that had measurable potency in an in vitro assay of anticoagulant activity. The second compound, 2, has a molar affinity for factor Xa (K(iapp)) of 7 pM and good bioavailability. The two inhibitors bind in an L-shaped conformation with a chloroaromatic ring buried deeply in the S1 pocket. The opposite end of these compounds contains a basic substituent that extends into the S4 binding site. A chlorinated phenyl ring bridges the substituents in the S1 and S4 pockets via amide linkers. The overall conformation is similar to the previously published structures for amidine-based inhibitors complexed with factor Xa. However, there are significant differences in the interactions between the inhibitor and the protein at the atomic level. Most notably, there is no group that forms a salt bridge with the carboxylic acid at the base of the S1 pocket (Asp189). Each inhibitor forms only one well-defined hydrogen bond to the protein. There are no direct charge-charge interactions. The results indicate that electrostatic interactions play a secondary role in the binding of these potent inhibitors.  相似文献   
68.
69.
70.

Background

The protein encoded by the gene ybgI was chosen as a target for a structural genomics project emphasizing the relation of protein structure to function.

Results

The structure of the ybgI protein is a toroid composed of six polypeptide chains forming a trimer of dimers. Each polypeptide chain binds two metal ions on the inside of the toroid.

Conclusion

The toroidal structure is comparable to that of some proteins that are involved in DNA metabolism. The di-nuclear metal site could imply that the specific function of this protein is as a hydrolase-oxidase enzyme.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号