首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   33篇
  394篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   15篇
  2012年   19篇
  2011年   19篇
  2010年   9篇
  2009年   10篇
  2008年   15篇
  2007年   13篇
  2006年   13篇
  2005年   15篇
  2004年   18篇
  2003年   12篇
  2002年   18篇
  2001年   12篇
  2000年   10篇
  1999年   13篇
  1998年   5篇
  1996年   4篇
  1995年   6篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   13篇
  1989年   7篇
  1988年   2篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   10篇
  1983年   10篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   4篇
  1969年   1篇
  1966年   3篇
排序方式: 共有394条查询结果,搜索用时 0 毫秒
81.
82.
Gali  Sowmya  Nidumolu  Venkatram 《Cluster computing》2022,25(3):1779-1789
Cluster Computing - The Internet of Things (IoT) defines the network of physical objects, commonly used to interconnect and communicate with other devices through the internet. Security is highly...  相似文献   
83.
The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology.  相似文献   
84.
The current study forms part of an ongoing research effort focusing on the elucidation of the chemical structure of the sulfated extracellular polysaccharide of the red microalga Porphyridium sp. (UTEX 637). We report here on the chemical structure of a fraction separated from an acidic crude extract of the polysaccharide, as investigated by methylation analysis, carboxyl reduction-methylation analysis, desulfation-methylation analysis, partial acid hydrolysis, Smith degradation, together with 1D and 2D 1H and 13C NMR spectroscopy. This fraction with a molar mass of 2.39 × 105 g mol−1 comprised d- and l-Gal, d-Glc, d-Xyl, d-GlcA, and sulfate groups in a molar ratio of 1.0:1.1:2.1:0.2:0.7. The almost linear backbone of the fraction is composed of (1→2)- or (1→4)-linked d-xylopyranosyl, (1→3)-linked l-galactopyranosyl, (1→3)-linked d-glucopyranosyl, and (1→3)-linked d-glucopyranosyluronic acid and comprises a possible acidic building unit:

[(2 or 4)-β-d-Xylp-(l→3)]m-α-d-Glcp-(1→3)-α-d-GlcpA-(1→3)-l-Galp(l→

Attached to the backbone are sulfate groups and nonreducing terminal d-xylopyranosyl and galactopyranosyl residues, which occur at the O-6 positions of Glc-derived moieties in the main chain.  相似文献   
85.

Background  

Nitric oxide (NO) is cardioprotective and a mediator of ischemic preconditioning (IP). Endothelial nitric oxide synthase (eNOS) is protective against myocardial ischemic injury and a component of IP but the role and location of neuronal nitric oxide synthase (nNOS) remains unclear. Therefore, the aims of these studies were to: (i) investigate the role of nNOS in ischemia/reoxygenation-induced injury and IP, (ii) determine whether its effect is species-dependent, and (iii) elucidate the relationship of nNOS with mitoKATP channels and p38MAPK, two key components of IP transduction pathway.  相似文献   
86.
A thermo stable xylanase was purified and characterized from the cladodes of Cereus pterogonus plant species. The enzyme was purified to homogeneity by ammonium sulfate (80%) fractionation, ion exchange and size exclusion chromatography. The enzyme showed a final specific activity of 216.2 U/mg and the molecular mass of the protein was 80 KDa. The optimum pH and temperature for xylanase activity were 5.0 and 80 °C, respectively,. With oat spelt xylan as a substrate the enzyme yielded a Km value of 2.24 mg/mL and a Vmax of 5.8 μmol min−1 mg−1. In the presence of metal ions (1 mM) such as Co2+,Mn2+, Ni2+, Ca2+ and Fe3+ the activity of the enzyme increased, where as strong inhibition of the enzyme activity was observed with the use of Hg2+, Cd2+, Cu2+, while partial inhibition was noted with Zn2+ and Mg2+. The substrate specificity of the xylanase yielded maximum activity with oat spelt xylan.  相似文献   
87.
The majority of heron species (Aves, Ardeidae) forage on aquatic prey in shallow water. Prey detection, aiming and the beginning of the capture strikes are performed while the heron's eyes are above water. For most angles, as a result of air/water light refraction, the apparent image available to a heron is vertically displaced from the prey's real position. Herons must therefore correct for refraction. We tested the hypothesis that species that forage in aquatic habitats should be more able to correct for image disparity than those of terrestrial habitats. The ability of hand-reared herons of four species to capture stationary prey (fish) underwater (submerged) or in air (aerial) was tested. Three species (little egret Egretta garzetta, squacco heron Ardeola ralloides, and night heron Nycticorax nycticorax) normally forage in aquatic habitats while the fourth (cattle egret Bubulcus ibis) forages in terrestrial habitats. No individuals missed aerial prey. Success rates of little egrets and of squacco herons with submerged prey were high, while night herons became less successful with increased prey depth and/or distance. In cattle egrets, success rate was low and negatively correlated with prey depth. The observed interspecific differences may thus be related to (1) differential ability to correct for air/water light refraction and (2) the species' foraging behaviour. We suggest that cattle egrets are in the process of losing their ability to cope with submerged prey. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   
88.
Occurrence of high-level mupirocin resistant coagulase-negative staphylococci in 5 hospitals in the region of Gdansk was determined. The study was carried out on 192 staphylococcal strains isolated from patients and medical staff. The mupirocin resistant strains were detected by 5 microgram mupirocin disc. The minimal inhibitory concentration (MIC) for mupirocin was estimated by E-tests. The mupirocin resistant strains were characterised by antibiotic sensitivity, including MIC for glycopeptides and oxacillin. Biotypes of resistant strains were also determined. Eight high-level mupirocin resistant strains (4.7%) were found. Only one strain expressed low-level resistance. All but one of high-level mupirocin resistant strains were resistant to methicillin. Six of them belonged to the S. epidermidis species but differences in the biotypes and antibiotic resistance patterns of these strains suggest they did not have a common origin.  相似文献   
89.
Bombesin (BBN), a 14 amino acid peptide, is an analogue of human gastrin releasing peptide (GRP) that binds to GRP receptors (GRPr) with high affinity and specificity. The GRPr is overexpressed on a variety of human cancer cells, including prostate, breast, lung, and pancreatic cancers. The specific aim of this study was to develop (99m)Tc-radiolabeled BBN analogues that maintain high specificity for the GRPr in vivo. A preselected synthetic sequence via solid-phase peptide synthesis (SPPS) was designed to produce N(3)S-BBN (N(3)S = dimethylglycyl-l-seryl-l-cysteinylglycinamide) conjugates with the following general structure: DMG-S-C-G-X-Q-W-A-V-G-H-L-M-(NH(2)), where the spacer group, X = 0 (no spacer), omega-NH(2)(CH(2))(2)COOH, omega-NH(2)(CH(2))(4)COOH, omega-NH(2)(CH(2))(7)COOH, or omega-NH(2)-(CH(2))(10)COOH. The new BBN constructs were purified by reversed phase-HPLC (RP-HPLC). Electrospray mass spectrometry (ES-MS) was used to characterize the nonmetalated BBN conjugates. Re(V)-BBN conjugates were prepared by the reaction of Re(V)gluconate with N(3)S-X-BBN[7-14]NH(2) (X = 0 carbons, beta-Ala (beta-alanine), 5-Ava (5-aminovaleric acid), 8-Aoc (8-aminooctanoic acid), and 11-Aun (11-aminoundecanoic acid)) with gentle heating. Re-N(3)S-5-Ava-BBN[7-14]NH(2) was also prepared by the reaction of [Re(V)dimethylglycyl-l-seryl-l-cysteinylglycinamide] with 5-Ava-BBN[7-14]NH(2). ES-MS was used to determine the molecular constitution of the new Re(V) conjugates. The (99m)Tc conjugates were prepared at the tracer level by each the prelabeling, post-conjugation and pre-conjugation, postlabeling approaches from the reaction of Na[(99m)TcO(4)] with excess SnCl(2), sodium gluconate, and corresponding ligand. The (99m)Tc and Re(V) conjugates behaved similarly under identical RP-HPLC conditions. In vitro and in vivo models demonstrated biological integrity of the new conjugates.  相似文献   
90.
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. The Schiff base intermediate formed during this reaction between Escherichia coli Fpg and DNA was trapped by reduction with sodium borohydride, and the structure of the resulting covalently cross-linked complex was determined at a 2.1-A resolution. Fpg is a bilobal protein with a wide, positively charged DNA-binding groove. It possesses a conserved zinc finger and a helix-two turn-helix motif that participate in DNA binding. The absolutely conserved residues Lys-56, His-70, Asn-168, and Arg-258 form hydrogen bonds to the phosphodiester backbone of DNA, which is sharply kinked at the lesion site. Residues Met-73, Arg-109, and Phe-110 are inserted into the DNA helix, filling the void created by nucleotide eversion. A deep hydrophobic pocket in the active site is positioned to accommodate an everted base. Structural analysis of the Fpg-DNA complex reveals essential features of damage recognition and the catalytic mechanism of Fpg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号