首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1853篇
  免费   125篇
  1978篇
  2024年   2篇
  2023年   13篇
  2022年   28篇
  2021年   74篇
  2020年   35篇
  2019年   46篇
  2018年   58篇
  2017年   44篇
  2016年   67篇
  2015年   111篇
  2014年   104篇
  2013年   153篇
  2012年   188篇
  2011年   207篇
  2010年   106篇
  2009年   96篇
  2008年   116篇
  2007年   92篇
  2006年   88篇
  2005年   79篇
  2004年   81篇
  2003年   67篇
  2002年   49篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1996年   8篇
  1995年   7篇
  1994年   1篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
  1957年   1篇
排序方式: 共有1978条查询结果,搜索用时 0 毫秒
71.
Electrochemical biosensors have found wide application in food and clinical areas, as well as in environmental field. A large number of articles focused on horseradish peroxidase (HRP)-based biosensors have been published in the last decade, due to the capability of HRP to quantitatively detect the presence of hydrogen peroxide produced in a reaction. At present a large body of multi-enzymatic amperometric biosensors are realized by entrapping HRP together with other enzymes into a polymeric matrix; these systems represent a promising example of simple, low-cost electrochemical tools for the analysis of bioanalytes in solution, such as glucose, choline and cholesterol. Due to the fact that polymers used for HRP entrapping are soluble in organic solvents and that many solvents are strong denaturants of aquo-soluble proteins, in this paper we investigate (in particular, by circular dichroism and electron paramagnetic spectroscopies) the effect of dimethyl sulfoxide, one of the organic solvents employed for polymer solubilization, on the structure and the functionality of HRP, in order to determine the effect induced by the solvent concentration on the structure and activity of the hemoprotein. This is relevant for basic and applied biochemistry, HRP being largely employed in bioinorganic chemistry and sensor area.  相似文献   
72.
Chemistry and biochemistry of magnesium   总被引:3,自引:0,他引:3  
  相似文献   
73.
Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.  相似文献   
74.
The use of myrtle (Myrtus communis L.) as a culinary spice and as a flavoring agent for alcoholic beverages is widespread in the Mediterranean area, and especially in Sardinia. Myrtle contains unique oligomeric non-prenylated acylphloroglucinols, whose antioxidant activity was investigated in various systems. Both semimyrtucommulone (1) and myrtucommulone A (2) showed powerful antioxidant properties, protecting linoleic acid against free radical attack in simple in vitro systems, inhibiting its autoxidation and its FeCl3- and EDTA-mediated oxidation. While both compounds lacked pro-oxidant activity, semimyrtucommulone was more powerful than myrtucommulone A, and was further evaluated in rat liver homogenates for activity against lipid peroxidation induced by ferric-nitrilotriacetate, and in cell cultures for cytotoxicity and the inhibition of TBH- or FeCl3-induced oxidation. The results of these studies established semimyrtucommulone as a novel dietary antioxidant lead.  相似文献   
75.
76.
We investigated whether a combination of static electromagnetic field (EMF) at a flux density of 4.75 T together with pulsed EMF at a flux density of 0.7 mT generated by an NMR apparatus (NMRF), could promote movements of Ca(2+), cell proliferation, and the eventual production of proinflammatory cytokines in human lymphocytes as well as in Jurkat cells, after exposure to the field for 1 h. The same study was also performed after activation of cells with 5 micro g/ml phytohaemagglutinin (PHA) immediately before the exposure period. Our results clearly demonstrate that NMRF exposure increases the [Ca(2+)](i), without any proliferative, or activating, or proinflammatory effect on both normal and PHA stimulated lymphocytes. Accordingly, the levels of interferon gamma, tumor necrosis factor alpha, interleukin-1beta, interleukin-2, and interleukin-6 remained unvaried after exposure. Exposure of Jurkat cells statistically decreased the [Ca(2+)](i) and the proliferation. This is consistent with the low levels of IL-2 measured in supernatants of these cells after exposure. On the whole our data suggest that static and pulsed NMRF exposure contribute synergistically in the increase of the [Ca(2+)](i) without any activating or proinflammatory effect either in normal or in PHA challenged lymphocytes. In Jurkat cells, by changing the properties of cell membranes, NMRF exposure can influence Ca(2+) transport processes and hence Ca(2+) homeostasis, causing a marked decrease of proliferation.  相似文献   
77.
The possible degradation of the tumor antigen epitope gp100(280-288) (YLEPGPVTA) in the presence of the monocyte-like line U937, and the effect of degradation on the in vitro-measured immune recognition, were investigated by chromatographic techniques and immunological assays. Results indicate a rapid hydrolysis of the substrate in the presence of the model cells, which is consistent with the hypothesis that degradation of gp100(280-288) is caused by the activity of U937-expressed enzymes, specifically amino- and carboxypeptidases. On the other hand, these results do not support the involvement of other enzymes known to be expressed by U937 cells. From a functional point of view, these data indicate that the degradation of gp100(280-288) severely hampered recognition by specific CTL clones. The results obtained may provide a model for epitope degradation by the antigen-presenting cells found in defined anatomical compartments and may, at least in part, account for the low activity of peptide-based antineoplastic vaccines, as well as for the transience of the effects of subcutaneously administered peptides in general.  相似文献   
78.
In this paper, we present a strategy for the 1HN resonance assignment in solid-state magic-angle spinning (MAS) NMR, using the -spectrin SH3 domain as an example. A novel 3D triple resonance experiment is presented that yields intraresidue HN-N-C correlations, which was essential for the proton assignment. For the observable residues, 52 out of the 54 amide proton resonances were assigned from 2D (1H-15N) and 3D (1H-15N-13C) heteronuclear correlation spectra. It is demonstrated that proton-driven spin diffusion (PDSD) experiments recorded with long mixing times (4 s) are helpful for confirming the assignment of the protein backbone 15N resonances and as an aid in the amide proton assignment.  相似文献   
79.
Adult mammalian hearts respond to injury with scar formation and not with cardiomyocyte proliferation, the cellular basis of regeneration. Although cardiogenic progenitor cells may maintain myocardial turnover, they do not give rise to a robust regenerative response. Here we show that extracellular periostin induced reentry of differentiated mammalian cardiomyocytes into the cell cycle. Periostin stimulated mononucleated cardiomyocytes to go through the full mitotic cell cycle. Periostin activated alphaV, beta1, beta3 and beta5 integrins located in the cardiomyocyte cell membrane. Activation of phosphatidylinositol-3-OH kinase was required for periostin-induced reentry of cardiomyocytes into the cell cycle and was sufficient for cell-cycle reentry in the absence of periostin. After myocardial infarction, periostin-induced cardiomyocyte cell-cycle reentry and mitosis were associated with improved ventricular remodeling and myocardial function, reduced fibrosis and infarct size, and increased angiogenesis. Thus, periostin and the pathway that it regulates may provide a target for innovative strategies to treat heart failure.  相似文献   
80.
Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4 inhibitor”. Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish “metabolic parasites”, like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted “antibiotics” to selectively starve cancer cells. Our results provide new support for the “seed and soil” hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号