首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42533篇
  免费   3761篇
  国内免费   207篇
  2018年   499篇
  2017年   485篇
  2016年   638篇
  2015年   720篇
  2014年   927篇
  2013年   1111篇
  2012年   1251篇
  2011年   1277篇
  2010年   875篇
  2009年   876篇
  2008年   1200篇
  2007年   1194篇
  2006年   1201篇
  2005年   1037篇
  2004年   985篇
  2003年   924篇
  2002年   911篇
  2001年   2788篇
  2000年   2472篇
  1999年   1812篇
  1998年   625篇
  1997年   538篇
  1996年   483篇
  1995年   411篇
  1994年   394篇
  1992年   1297篇
  1991年   1171篇
  1990年   1107篇
  1989年   1056篇
  1988年   945篇
  1987年   933篇
  1986年   810篇
  1985年   803篇
  1984年   574篇
  1983年   520篇
  1982年   378篇
  1979年   638篇
  1978年   465篇
  1977年   425篇
  1976年   370篇
  1975年   505篇
  1974年   582篇
  1973年   563篇
  1972年   577篇
  1971年   554篇
  1970年   526篇
  1969年   530篇
  1968年   429篇
  1967年   378篇
  1966年   412篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Three elderberry lectins isolated from the bark of three different species of the genus Sambucus which are native to Europe (S. nigra), North America (S. canadensis), and Japan (S. sieboldiana) were studied comparatively with regard to their carbohydrate binding properties and some structural features. All three lectins contained two identical carbohydrate binding sites per molecule and showed a very high specificity for the Neu5Ac(alpha 2-6)-Gal/GalNAc sequence. However, relative affinities for various oligosaccharides were significantly different among them, suggesting differences in the detailed structure of the carbohydrate binding sites of these lectins. The three lectins were immunologically related, but not identical, and all were composed of hydrophobic and hydrophilic subunit regions, although the molecular sizes of these subunits were slightly different among the three lectins. N-terminal sequence analysis of the subunits of these lectins suggested that they have a very similar structure in this region but also indicated the occurrence of N-terminal processing such as the deletion of several amino acid residues at the N-termini for both hydrophobic and hydrophilic subunits of all three lectins. Tryptic peptide mapping of the three lectins showed a similar pattern for all of them but also showed the presence of some unique peptides for each lectin.  相似文献   
982.
983.
The hydrolytic activity of phosphatidylcholine phospholipase D in the synaptosomes from canine brain was examined using a radiochemical assay with 1,2-dipalmitoyl-sn-glycerol-3-phosphoryl[3H]choline as the exogenous substrate. The involvement of G protein(s) in regulation of this enzyme was demonstrated by a 2- to 3-fold stimulation of the basal activity (4.81 +/- 0.44 nmol choline released/mg protein/h) with guanosine 5'-(3-O-thiol)triphosphate (GTP gamma S), guanyl-5'-yl-(beta, gamma-methylene)diphosphonate, aluminum fluoride, or cholera toxin. The stimulation of phospholipase D hydrolytic activity by GTP gamma S was inhibited by 2 mM guanosine 5'-(2-O-thiol)diphosphate. GTP gamma S at the maximum stimulatory concentration (10 microM) had an additive effect on the maximum cholera toxin stimulation of phospholipase D activity. However, the reverse was not true, thus indicating the possibility that more than one G protein may be involved. Furthermore, cholinergic agonists, including acetylcholine, carbachol, and muscarine, were able to increase the phospholipase D hydrolytic activity at low but not maximally stimulatory concentrations of guanine nucleotide. These cholinergic stimulations were antagonized by atropine, a muscarinic blocker. In addition, O-tetradecanoylphorbol 13-acetate, a protein kinase C activator, was able to stimulate the hydrolytic activity of phospholipase D more than 300% in the presence of 0.2 microM GTP gamma S. However, in the absence of GTP gamma S, stimulation was less than 60%. Our results not only indicate that the receptor-G protein-regulated phospholipase D may be directly responsible for the rapid accumulation of choline and phosphatidic acid in the central nervous system but also reveal that muscarinic acetylcholine receptor-G protein-regulated phospholipase D is a novel signal transduction process coupling the neuronal muscarinic receptor to cellular responses.  相似文献   
984.
985.
986.
Poly(ADP-ribose) prepared by incubating NAD+ with rat liver nuclei inhibited the hydroxylation reaction catalyzed by purified prolyl hydroxylase (proline,2-oxoglutarate dioxygenase, EC 1.14.11.2) in vitro. Near complete inhibition of the enzyme was seen in the presence of 6 nM (ADP-Rib)18 with a Ki(app) of 1.5 nM. The monomer unit of poly(ADP-ribose), adenosine diphosphoribose (ADP-Rib), was found to be a weak inhibitor. On the other hand, poly(ADP-ribose)-derived phosphoribosyl-AMP (PRib-AMP) and its dephosphorylated product, ribosyl-ribosyl-adenine (Rib-RibA), inhibited the enzyme in nanomolar concentrations (Ki(app) 16.25 nM). The order of inhibition was (ADP-Rib)18 greater than PRib-AMP, Rib-RibA much greater than ADP-Rib. These results suggested that the 1"----2' ribosyl-ribosyl moiety in these compounds was involved in the inhibition of the enzyme. The possibility that intracellular prolyl hydroxylase is regulated by the involvement of ADP-ribosylation reactions was examined in confluent cultures of skin fibroblast treated with 20 mM lactate. The activity of prolyl hydroxylase was stimulated by 145% over that of untreated cultures. In the lactate-treated cells, the level of NAD+ was lowered and the total ADP-ribosylation of cellular proteins reduced by 40%. These observations imply that the lactate-induced activation of cellular prolyl hydroxylase is mediated by a reduction in ADP-ribosylation and that the synthesis and degradation of ADP-ribose moiety(ies) may possibly regulate prolyl hydroxylase activity in vivo.  相似文献   
987.
988.
Reticulocyte lysate contains all the components of the ubiquitin-dependent proteolytic system. Several proteins are degraded in reticulocyte lysate in a ubiquitin-dependent manner. However, none of the proteins studied has a short intracellular half-life. We have investigated the degradation of ornithine decarboxylase (ODC), one of the most labile proteins in mammalian cells. ODC is efficiently degraded in reticulocyte lysate depleted of the ubiquitin activating enzyme, E1, in fraction II of reticulocyte lysate completely lacking ubiquitin, and in fraction II depleted of the entire complex of enzymes responsible for the ligation of ubiquitin to target proteins. The degradation of ODC is ATP dependent. Therefore, our results demonstrate that in addition to the ubiquitin-dependent proteolytic pathway, reticulocyte lysate contains at least one additional ATP-dependent proteolytic pathway. In vitro synthesized ODC served as a substrate in the present degradation study. Its successful utilization establishes a general strategy for investigating the degradation of short-lived proteins (for which a corresponding cDNA is available), that constitute a very small fraction of cellular proteins and for which purification is difficult or impossible. In contrast to ODC synthesized in vitro, that isolated from cells was not degraded by the reticulocyte lysate degradation system, suggesting that post-translational modifications may be involved in regulating ODC degradation.  相似文献   
989.
The tau and gamma subunits of the DNA polymerase III holoenzyme of Escherichia coli were each isolated in large quantities as oligomers from overproducing cells in which their genes (dnaZ and X) were under the control of a T7 phage promoter. The 52-kDa gamma subunit (encoded by the dnaZ sequence) contains three-forths of the N-terminal residues of the 71-kDa tau subunit (encoded by the dnaX sequence). Both gamma and tau share a binding site for ATP (or dATP). A DNA-dependent ATPase activity (Lee, S.H., and Walker, J.R. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 2713-2717) exhibited only by the tau subunit, presumably requires a DNA-binding site in the C-terminal domain lacking in the gamma subunit. Among ATPases dependent on single-stranded DNA, the tau activity is remarkable in the failure of homopolymers (e.g. poly(dA) or poly(dT)) to replace natural DNAs. The presumed need for certain secondary structures may reflect a feature of template binding in the crucial contribution that tau makes to the high processivity of polymerase III holoenzyme. Limited tryptic digestion of tau generates a fragment that resembles gamma in: (i) size, (ii) binding of ATP without ATPase activity, and (iii) a level of complementing holoenzyme activity in extracts of dnaZ-mutant cells that is higher than that of tau.  相似文献   
990.
Three states for the formyl peptide receptor on intact cells   总被引:2,自引:0,他引:2  
Three distinct states of the formyl peptide receptor have been described. These are: 1) the ternary complex of ligand, receptor, and G protein (LRG); 2) the rapidly dissociating occupied receptor (ligand-receptor complex (LR]; and 3) a desensitized slowly dissociating guanine nucleotide-insensitive receptor (desensitized ligand-receptor complex ("LRX"]. During cell activation there is a rapid interconversion among receptor states from a rapidly dissociating form (t 1/2 approximately 10 s) to a slowly dissociating form (t 1/2 greater than or equal to 2 min). Neither the dynamics of the states nor their interconversion is influenced by ribosylation of G protein in the presence of pertussis toxin. In contrast to ribosylation, treatment of cells with either 2-deoxyglucose or fluoride ion, both of which lead to a loss of adenine and guanine nucleotides, causes a time-dependent change in ligand dissociability. After short periods of treatment (5-15 min) rapid dissociation is observed; after longer times (30-60 min), slow dissociation is once again detected. When intact cells are first ribosylated and then energy-depleted, only a rapidly dissociating receptor is detected. These results are discussed in terms of a model with the following elements: 1) intact cell dynamics during cell activation are dominated by an energy-dependent interconversion from LR to LRX; 2) under activation conditions, LRG appears and disappears too rapidly to be detected; 3) in cells depleted of energy and guanine nucleotide, LRG is stabilized; 4) in cells both ribosylated and depleted of energy, LR is stabilized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号