首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   74篇
  国内免费   3篇
  875篇
  2021年   8篇
  2019年   10篇
  2017年   6篇
  2016年   17篇
  2015年   24篇
  2014年   25篇
  2013年   42篇
  2012年   33篇
  2011年   22篇
  2010年   27篇
  2009年   18篇
  2008年   33篇
  2007年   33篇
  2006年   28篇
  2005年   37篇
  2004年   27篇
  2003年   16篇
  2002年   25篇
  2001年   15篇
  2000年   21篇
  1999年   13篇
  1998年   15篇
  1997年   14篇
  1996年   13篇
  1995年   12篇
  1994年   9篇
  1993年   16篇
  1992年   18篇
  1991年   13篇
  1990年   12篇
  1989年   13篇
  1988年   17篇
  1987年   11篇
  1986年   8篇
  1985年   10篇
  1984年   11篇
  1983年   7篇
  1982年   12篇
  1981年   13篇
  1979年   8篇
  1978年   14篇
  1977年   11篇
  1975年   11篇
  1974年   7篇
  1973年   10篇
  1972年   6篇
  1971年   6篇
  1970年   6篇
  1940年   9篇
  1939年   7篇
排序方式: 共有875条查询结果,搜索用时 0 毫秒
61.
Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called over-expressing allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.  相似文献   
62.
A mechanism for sensing noise damage in the inner ear   总被引:7,自引:0,他引:7  
Our sense of hearing requires functional sensory hair cells. Throughout life those hair cells are subjected to various traumas, the most common being loud sound. The primary effect of acoustic trauma is manifested as damage to the delicate mechanosensory apparatus of the hair cell stereocilia. This may eventually lead to hair cell death and irreversible deafness. Little is known about the way in which noxious sound stimuli affect individual cellular components of the auditory sensory epithelium. However, studies in different types of cell cultures have shown that damage and mechanical stimulation can activate changes in intracellular free calcium concentration ([Ca(2+)](i)) and elicit intercellular Ca(2+) waves. Thus an attractive hypothesis is that changes in [Ca(2+)](i), propagating as a wave through support cells in the organ of Corti, may constitute a fundamental mechanism to signal the occurrence of hair cell damage. The mechanism we describe here exhibits nanomolar sensitivity to extracellular ATP, involves regenerative propagation of intercellular calcium waves due to ATP originating from hair cells, and depends on functional IP(3)-sensitive intracellular stores in support cells.  相似文献   
63.
The first step in the colonization of the human urinary tract by pathogenic Escherichia coli is the mannose-sensitive binding of FimH, the adhesin present at the tip of type 1 pili, to the bladder epithelium. We elucidated crystallographically the interactions of FimH with D-mannose. The unique site binding pocket occupied by D-mannose was probed using site-directed mutagenesis. All but one of the mutants examined had greatly diminished mannose-binding activity and had also lost the ability to bind human bladder cells. The binding activity of the mono-saccharide D-mannose was delineated from this of mannotriose (Man(alpha 1-3)[Man(alpha 1-6)]Man) by generating mutants that abolished D-mannose binding but retained mannotriose binding activity. Our structure/function analysis demonstrated that the binding of the monosaccharide alpha-D-mannose is the primary bladder cell receptor for uropathogenic E. coli and that this event requires a highly conserved FimH binding pocket. The residues in the FimH mannose-binding pocket were sequenced and found to be invariant in over 200 uropathogenic strains of E. coli. Only enterohaemorrhagic E. coli (EHEC) possess a sequence variation within the mannose-binding pocket of FimH, suggesting a naturally occurring mechanism of attenuation in EHEC bacteria that would prevent them from being targeted to the urinary tract.  相似文献   
64.
Viruses and interferon: a fight for supremacy   总被引:1,自引:0,他引:1  
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses -- influenza, hepatitis C, herpes simplex and vaccinia -- to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus-host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.  相似文献   
65.
Leukotrienes are inflammatory mediators involved in several diseases. The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Little structural information is available regarding 5-lipoxygenase. In this study, we found that the primary structure of the catalytic domain of human 5-lipoxygenase is similar to that of the rabbit 15-lipoxygenase. This similarity allowed the development of a theoretical model of the tertiary structure of the 5-lipoxygenase catalytic domain, using the resolved structure of rabbit 15-lipoxygenase as a template. This model was used in conjunction with primary and secondary structural information to investigate putative nucleotide binding sites, a MAPKAP kinase 2 phosphorylation site, and a Src homology 3 binding site on the 5-lipoxygenase protein, further. Results indicate that the putative nucleotide binding sites are spatially distinct, with one on the -barrel domain and the other(s) on the catalytic domain. The MAPKAP kinase 2 phosphorylation site involves a four amino acid insertion in mammalian 5-lipoxygenases that significantly alters molecular structure. This target for post-translational modification is both common and unique to 5-lipoxygenases. The Src homology 3 binding site, found in all lipoxygenases, appears to lack the characteristic left-handed type II helix structure of known Src homology 3 binding sites. These results, which highlight the unique nature of the MAPKAP kinase site, underscore the utility of structural information in the analysis of protein function. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00894-002-0076-y.Electronic Supplementary Material available.  相似文献   
66.
Comparative analysis has long been utilized in biological research to interpret protein interactions in both drug na?ve versus drug challenged and normal versus diseased tissues. The technology of proteomics today allows researchers to provide insight into old and still open questions related to biological mechanisms while offering the opportunity to discover novel details in cellular lifecycles. Perhaps the most powerful way to execute these differential displays is in the combination of two-dimensional (2-D) gel electrophoresis and mass spectrometry. While these two techniques together are well suited for abundant and soluble proteins found in cells, rare proteins and integral membrane proteins are still problematic. Recently, a series of novel zwitterionic detergents has been reported in the literature that shows a substantial improvement in solubilizing integral membrane proteins. We show that the amidosulfobetaine, 4-octylbenzol amidosulfobetaine, is better than 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS) at solubilizing both an ion channel and a G-protein coupled receptor (GPCR), while another amidosulfobetaine, myristic amidosulfobetaine (ASB-14), was better than CHAPS at solubilizing a GPCR. Neither membrane protein was visible after staining with colloidal Coomassie blue, silver nor Sypro Ruby. However, a comparison against a duplicate immunoblot allowed for the localization and identification of the ion channel from a 2-D gel by liquid chromatography-tandem mass spectrometry.  相似文献   
67.
Gale M  Blakely CM  Darveau A  Romano PR  Korth MJ  Katze MG 《Biochemistry》2002,41(39):11878-11887
The 52 kDa protein referred to as P52(rIPK) was first identified as a regulator of P58(IPK), a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52(rIPK) and P58(IPK) each possess structural domains implicated in stress signaling, including the charged domain of P52(rIPK) and the tetratricopeptide repeat (TPR) and DnaJ domains of P58(IPK). The P52(rIPK) charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52(rIPK) function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58(IPK). This domain bound specifically to P58(IPK) TPR domain 7, the domain adjacent to the TPR motif required for P58(IPK) interaction with PKR, thus providing a mechanism for P52(rIPK) inhibition of P58(IPK) function. Both the charged domain of P52(rIPK) and the TPR 7 domain of P58(IPK) were required for P52(rIPK) to mediate downstream control of PKR activity, eIF2alpha phosphorylation, and cell growth. Furthermore, we found that P52(rIPK) and P58(IPK) formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52(rIPK) charged domain functions as a TPR-specific signaling motif to directly regulate P58(IPK) within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation.  相似文献   
68.
High-molecular-weight glutenin subunits (HMW-GS) are important determinants of wheat dough quality as they confer visco-elastic properties to the dough required for mixing and baking performance. With this important role, the HMW-GS alleles are key markers in breeding programs. In this work, we present the use of a PCR marker initially designed to discriminate Glu1 Bx7 and Glu1 Bx17 HMW-GS. It was discovered that this marker also differentiated two alleles, originally both scored as Glu1 Bx7, present in the wheat lines CD87 and Katepwa respectively, by a size polymorphism of 18 bp. The marker was scored across a segregating doubled-haploid (DH) population (CD87 × Katepwa) containing 156 individual lines and grown at two sites. Within this population, the marker differentiated lines showing the over-expression of the Glu1 Bx7 subunit (indicated by the larger PCR fragment), derived from the CD87 parent, relative to lines showing the normal expression of the Glu1 Bx7 subunit, derived from the Katepwa parent. DNA sequence analysis showed that the observed size polymorphism was due to an 18 bp insertion/deletion event at the C-terminal end of the central repetitive domain of the Glu1 Bx 7 coding sequence, which resulted in an extra copy of the hexapeptide sequence QPGQGQ in the deduced amino-acid sequence of Bx7 from CD87. When the DH population was analysed using this novel Bx7 PCR marker, SDS PAGE and RP HPLC, there was perfect correlation between the Bx7 PCR marker results and the expression level of Bx7. This differentiation of the population was confirmed by both SDS-PAGE and RP-HPLC. The functional significance of this marker was assessed by measuring key dough properties of the 156 DH lines. A strong association was shown between lines with an over expression of Bx7 and high dough strength. Furthermore, the data demonstrated that there was an additional impact of Glu-D1 alleles on dough properties, with lines containing both over-expressed Bx7 and Glu-D1 5+10 having the highest levels of dough strength. However, there was no statistically significant epistatic interaction between Glu-B1 and Glu-D1 loci.Communicated by J.W. Snape  相似文献   
69.
Vertebrate body axis extension involves progressive generation and subsequent differentiation of new cells derived from a caudal stem zone; however, molecular mechanisms that preserve caudal progenitors and coordinate differentiation are poorly understood. FGF maintains caudal progenitors and its attenuation is required for neuronal and mesodermal differentiation and to position segment boundaries. Furthermore, somitic mesoderm promotes neuronal differentiation in part by downregulating Fgf8. Here we identify retinoic acid (RA) as this somitic signal and show that retinoid and FGF pathways have opposing actions. FGF is a general repressor of differentiation, including ventral neural patterning, while RA attenuates Fgf8 in neuroepithelium and paraxial mesoderm, where it controls somite boundary position. RA is further required for neuronal differentiation and expression of key ventral neural patterning genes. Our data demonstrate that FGF and RA pathways are mutually inhibitory and suggest that their opposing actions provide a global mechanism that controls differentiation during axis extension.  相似文献   
70.
Dalva MB  Takasu MA  Lin MZ  Shamah SM  Hu L  Gale NW  Greenberg ME 《Cell》2000,103(6):945-956
EphB receptor tyrosine kinases are enriched at synapses, suggesting that these receptors play a role in synapse formation or function. We find that EphrinB binding to EphB induces a direct interaction of EphB with NMDA-type glutamate receptors. This interaction occurs at the cell surface and is mediated by the extracellular regions of the two receptors, but does not require the kinase activity of EphB. The kinase activity of EphB may be important for subsequent steps in synapse formation, as perturbation of EphB tyrosine kinase activity affects the number of synaptic specializations that form in cultured neurons. These findings indicate that EphrinB activation of EphB promotes an association of EphB with NMDA receptors that may be critical for synapse development or function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号