首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   37篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   5篇
  2018年   11篇
  2017年   9篇
  2016年   22篇
  2015年   25篇
  2014年   29篇
  2013年   45篇
  2012年   57篇
  2011年   46篇
  2010年   27篇
  2009年   32篇
  2008年   32篇
  2007年   54篇
  2006年   41篇
  2005年   25篇
  2004年   26篇
  2003年   33篇
  2002年   24篇
  2001年   16篇
  2000年   25篇
  1999年   20篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   10篇
  1992年   19篇
  1991年   14篇
  1990年   12篇
  1989年   10篇
  1988年   4篇
  1987年   13篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1982年   4篇
  1981年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   5篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
  1961年   1篇
排序方式: 共有786条查询结果,搜索用时 15 毫秒
101.
The small GTPase RhoD regulates actin cytoskeleton to collapse actin stress fibers and focal adhesions, resulting in suppression of cell migration and cytokinesis. It also induces alignment of early endosomes along actin filaments and reduces their motility. We show here that a constitutively activated RhoD generated two types of actin-containing thin peripheral cellular protrusions distinct from Cdc42-induced filopodia. One was longer, almost straight, immotile, and sensitive to fixation, whereas the other was shorter, undulating, motile, and resistant to fixation. Moreover, cells expressing wild-type RhoD extended protrusions toward fibroblast growth factor (FGF) 2/4/8–coated beads. Stimulation of wild-type RhoD-expressing cells with these FGFs also caused formation of cellular protrusions. Nodules moved through the RhoD-induced longer protrusions, mainly toward the cell body. Exogenously expressed FGF receptor was associated with these moving nodules containing endosome-like vesicles. These results suggest that the protrusions are responsible for intercellular communication mediated by FGF and its receptor. Accordingly, the protrusions are morphologically and functionally equivalent to cytonemes. RhoD was activated by FGF2/4/8. Knockdown of RhoD interfered with FGF-induced protrusion formation. Activated RhoD specifically bound to mDia3C and facilitated actin polymerization together with mDia3C. mDia3C was localized to the tips or stems of the protrusions. In addition, constitutively activated mDia3C formed protrusions without RhoD or FGF stimulation. Knockdown of mDia3 obstructed RhoD-induced protrusion formation. These results imply that RhoD activated by FGF signaling forms cytoneme-like protrusions through activation of mDia3C, which induces actin filament formation.  相似文献   
102.
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.  相似文献   
103.
Here, we examined whether amyloid-beta (Abeta) protein participates in cell death and retinal function using three types of transgenic (Tg) mice in vivo [human mutant amyloid precursor protein (APP) Tg (Tg 2576) mice, mutant presenilin-1 (PS-1) knock-in mice, and APP/PS-1 double Tg mice]. ELISA revealed that the insoluble form of Abeta(1-40) was markedly accumulated in the retinas of APP and APP/PS-1, but not PS-1 Tg, mice (vs. wild-type mice). In APP Tg and APP/PS-1 Tg mice, immunostaining revealed accumulations of intracellular Abeta(1-42) in retinal ganglion cells and in the inner and outer nuclear layers. APP Tg and APP/PS-1 Tg, but not PS-1 Tg, mice had less NMDA-induced retinal damage than wild-type mice, and the reduced damage in APP/PS-1 Tg mice was diminished by the pre-treatment of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, a gamma-secretase inhibitor. Furthermore, the number of TUNEL-positive cells was significantly less in ganglion cell layer of APP/PS-1 Tg mice than PS-1 Tg mice 24 h after NMDA injection. The phosphorylated form of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha), but not total CaMKIIalpha or total NMDA receptor 1 (NR1) subunit, in total retinal extracts was decreased in non-treated retinas of APP/PS-1 Tg mice (vs. wild-type mice). CaMKIIalpha and NR2B proteins, but not NR1, in retinal membrane fraction were significantly decreased in APP/PS-1 Tg mice as compared with wild-type mice. The NMDA-induced increase in p-CaMKIIalpha in the retina was also lower in APP/PS-1 Tg mice than in wild-type mice. In electroretinogram and visual-evoked potential recordings, the implicit time to each peak from a light stimulus was prolonged in APP/PS-1 mice versus wild-type mice. Hence, Abeta may impair retinal function by reducing activation of NMDA-receptor signaling pathways.  相似文献   
104.
We initially investigated whether females of the cabbage butterfly, Pieris rapae crucivora, exhibit a seasonal change in ultraviolet wing color, which is a key stimulus for mate recognition by conspecific males, and whether and how a seasonal change affects the mating behavior of the males. We found that female UV wing color changes seasonally, the color being more pronounced in summer than in spring or autumn. We also demonstrated that male mate preference changes seasonally, concomitantly with the change in female UV color. Specifically, males appearing in summer exhibit a mating preference for summer-form females over spring- or autumn-form females, while those appearing in spring or autumn exhibit no seasonal preference, thereby facilitating more effective mate location. Our results suggest that this field of study will require more strictly controlled experimental investigation in which the seasonal change in UV color is considered when UV-influenced mating behaviors such as mate choice are investigated.  相似文献   
105.
S100A2 and S100A6 interact with several target proteins in a Ca2+-regulated manner. However, the exact intracellular roles of the S100 proteins are unclear. In this study we identified Hsp70/Hsp90-organizing protein (Hop) and kinesin light chain (KLC) as novel targets of S100A2 and S100A6. Hop directly associates with Hsp70 and Hsp90 through the tetratricopeptide (TPR) domains and regulates Hop-Hsp70 and Hop-Hsp90 complex formation. We have found that S100A2 and S100A6 bind to the TPR domain of Hop, resulting in inhibition of the Hop-Hsp70 and Hop-Hsp90 interactions in vitro. Although endogenous Hsp70 and Hsp90 interact with Hop in resting Cos-7 cells, but not with S100A6, stimulation of these cells with ionomycin caused a Hop-S100A6 interaction, resulting in the dissociation of Hsp70 and Hsp90 from Hop. Similarly, glutathione S-transferase pulldown and co-immunoprecipitation experiments revealed that S100A6 binds to the TPR domain of KLC, resulting in inhibition of the KLC-c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1) interaction in vitro. The transiently expressed JIP-1 interacts with KLC in resting Cos-7 cells but not with S100A6. Stimulation of these cells with ionomycin also caused a KLC-S100A6 interaction, resulting in dissociation of JIP-1 from KLC. These results strongly suggest that the S100 proteins modulate Hsp70-Hop-Hsp90 multichaperone complex formation and KLC-cargo interaction via Ca2+-dependent S100 protein-TPR protein complex formation in vivo as well as in vitro. Moreover, we have shown that S100A2 and S100A6 interact with another TPR protein Tom70 and regulate the Tom70-ligand interaction in vitro. Thus, our findings suggest a new intracellular Ca2+-signaling pathway via S100 proteins-TPR motif interactions.  相似文献   
106.
We recently found that the spontaneous integration of M13 procoat is blocked by diacylglycerol (DAG) (Nishiyama, K., Ikegami, A., Moser, M., Schiltz, E., Tokuda, H., and Muller, M. (2006) J. Biol. Chem. 281, 35667-35676). Here, we demonstrate that the spontaneous integration of Pf3 coat, another membrane protein that has been thought to be integrated spontaneously into liposomes, can be blocked by DAG at physiological concentrations. Moreover, the spontaneous integration of the membrane potential-independent version of Pf3 coat (3L-Pf3 coat), which is independent of YidC, was also blocked by DAG. To clarify the mechanism by which DAG blocks spontaneous integration, we examined lipid compounds similar to DAG and DAG derivatives. The blockage of spontaneous integration was specific to DAG, as fatty acids, monoacylglycerol, and phosphatidic acids were not effective for the blockage. When the acyl chains in DAG were shortened even to octanoyl residues, it still blocked spontaneous integration, whereas diheptanoylglycerol did not block it at all. Triacylglycerol was more effective than DAG. However, the lipid A-derivative-dependent integration of M13 procoat could not be reconstituted when triacylglycerol was included in the liposomes. On the other hand, when DAG was included in the liposomes, we found that the integration of 3L-Pf3 coat was strictly dependent on the lipid A-derived integration factor. We propose that the bulky structure of DAG rather than changes in membrane curvature is essential for the blockage of spontaneous integration. We also demonstrated that the blockage of spontaneous integration by DAG is also operative in native membrane vesicles.  相似文献   
107.
An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters mediating the transmembrane flux of substrates, the LolCDE complex catalyzes the extrusion of lipoproteins anchored to the outer leaflet of the inner membrane. Moreover, the LolCDE complex is unique in that it can be purified as a liganded form, which is an intermediate of the lipoprotein release reaction. Taking advantage of these unique properties, we established an assay system that enabled the analysis of a single cycle of lipoprotein transfer reaction from liganded LolCDE to LolA in a detergent solution. The LolA-lipoprotein complex thus formed was physiologically functional and delivered lipoproteins to the outer membrane in a LolB-dependent manner. Vanadate, a potent inhibitor of the lipoprotein release from proteoliposomes, was found to inhibit the release of ADP from LolCDE. However, a single cycle of lipoprotein transfer occurred from vanadate-treated LolCDE to LolA, indicating that vanadate traps LolCDE at the energized state.  相似文献   
108.
Okuda S  Watanabe S  Tokuda H 《FEBS letters》2008,582(15):2247-2251
The structures of a lipoprotein carrier, LolA, and a lipoprotein receptor, LolB, are similar except for an extra C-terminal loop containing a 3(10) helix and beta-strand 12 in LolA. Lipoprotein release was significantly reduced when beta-12 was deleted. Deletion of the 3(10) helix also inhibited the lipoprotein release. Furthermore, lipoproteins were non-specifically localized to membranes when LolA lacked the 3(10) helix. Thus, the membrane localization of lipoproteins with the LolA derivative lacking the 3(10) helix was independent of LolB whereas LolB was essential for the outer membrane localization of lipoproteins with the wild-type LolA.  相似文献   
109.
The aim of this study was to develop a simple, rapid and highly sensitive sensor for measuring the rare sugar d-psicose. The proposed system adopts amperometric flow analysis and two consecutive enzyme reactions consisting of a reactor packed with d-tagatose 3-epimerase (DTE)-immobilized beads, which converts d-psicose to d-fructose, and a carbon-paste electrode containing d-fructose dehydrogenase (DFDH). In order to fabricate a robust sensor system, various experimental parameters were optimized including the buffer composition, flow rate for the two enzyme reactions and the size of micro-flow cell. The developed sensor responded linearly to d-psicose concentration in the range from 0.08 to 50mM (R(2)=0.988). The signal/noise ratio was 3.0 for the 0.08 mM d-psicose solution, and the relative standard deviations were 1.7 (n=20) and 2.6% (n=20) for the 10 and 20mM d-psicose solutions, respectively. One round of assay was completed within 8 min. Our results suggest that the sensor can be used not only for the detection of d-psicose in food samples but also for monitoring d-psicose within the environment. Moreover, the sensor system can be applied to the detection of many other rare sugars by using the same measurement principle.  相似文献   
110.
In the present study, we investigated the effect of osmolality on the paracellular ion conductance (Gp) composed of the Na+ conductance (GNa) and the Cl conductance (GCl). An osmotic gradient generated by NaCl with relatively apical hypertonicity (NaCl-absorption-direction) induced a large increase in the GNa associated with a small increase in the GCl, whereas an osmotic gradient generated by NaCl with relatively basolateral hypertonicity (NaCl-secretion-direction) induced small increases in the GNa and the GCl. These increases in the Gp caused by NaCl-generated osmotic gradients were diminished by the application of sucrose canceling the NaCl-generated osmotic gradient. The osmotic gradient generated by basolateral application of sucrose without any NaCl gradients had little effects on the Gp. However, this basolateral application of sucrose produced a precondition drastically quickening the time course of the action of the NaCl-generated osmotic gradient on the Gp. Further, we found that application of the basolateral hypotonicity generated by reduction of NaCl concentration shifted the localization of claudin-1 to the apical from the basolateral side. These results indicate that the osmotic gradient regulates the paracellular ion conductive pathway of tight junctions via a mechanism dependent on the direction of NaCl gradients associated with a shift of claudin-1 localization to the apical side in renal A6 epithelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号