首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   10篇
  2023年   2篇
  2022年   3篇
  2021年   11篇
  2018年   9篇
  2016年   7篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   16篇
  2010年   9篇
  2009年   6篇
  2008年   12篇
  2007年   10篇
  2006年   4篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   8篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1984年   1篇
  1973年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
71.
72.
Entrapped bacterial cells are widely used in several biotechnological applications. Cell entrapment procedures are known to affect the viability of bacterial cells. To determine the effect of entrapment procedures on viability of bacterial cells, dissolution of the entrapment matrices using chelating agents or heat is required immediately after the entrapment is completed. Chelating agents and heat applied in the matrix dissolution reduce cell viability and in turn hinder accurate quantification of viable cells. In this study, a method to determine the effect of entrapment procedure on bacterial cell viability which involves entrapping cells directly onto glass slides was developed. The developed method showed less viability reduction than the methods requiring matrix dissolution. The percentage of live cells in the culture before entrapment ranged from 54% to 74%, while the percent of live cells after entrapment determined by the developed method was 39-62%.  相似文献   
73.
Polar lipids must flip-flop rapidly across biological membranes to sustain cellular life [1, 2], but flipping is energetically costly [3] and its intrinsic rate is low. To overcome this problem, cells have membrane proteins that function as lipid transporters (flippases) to accelerate flipping to a physiologically relevant rate. Flippases that operate at the plasma membrane of eukaryotes, coupling ATP hydrolysis to unidirectional lipid flipping, have been defined at a molecular level [2]. On the other hand, ATP-independent bidirectional flippases that translocate lipids in biogenic compartments, e.g., the endoplasmic reticulum, and specialized membranes, e.g., photoreceptor discs [4, 5], have not been identified even though their activity has been recognized for more than 30 years [1]. Here, we demonstrate that opsin is the ATP-independent phospholipid flippase of photoreceptor discs. We show that reconstitution of opsin into large unilamellar vesicles promotes rapid (τ<10 s) flipping of phospholipid probes across the vesicle membrane. This is the first molecular identification of an ATP-independent phospholipid flippase in any system. It reveals an unexpected activity for opsin and, in conjunction with recently available structural information on this G protein-coupled receptor [6, 7], significantly advances our understanding of the mechanism of ATP-independent lipid flip-flop.  相似文献   
74.
The world is projected to experience an approximate doubling of atmospheric CO_2 concentration in the next decades. Rise in atmospheric CO_2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 ℃-5.8 ℃ by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO_2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species(ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress(OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O_2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.  相似文献   
75.
76.
Acyl carrier protein (ACP) is responsible for carrying the growing fatty acid chain from one enzyme active site to the next during fatty acid biosynthesis. Here we report the identification, purification, immunocytochemical localization, and cloning of ACP from the oleaginous yeast, Rhodotorula glutinis. The soluble fraction of this organism can synthesize triacylglycerol and is able to accept the acyl group from acyl-ACP for the synthesis. The ACP, cloned from the system, showed a significant similarity with ribosomal protein P2. Expression and characterization of the recombinant protein showed that the ACP was acylated in vitro. The recombinant protein was post-translationally modified, since it was observed in [14C]beta-alanine labeling and matrix-assisted laser desorption mass spectroscopic analysis. Site-directed mutants were generated to identify a serine residue responsible for phosphopantetheinylation and found that mutation of serine 59 to alanine abrogated the fatty acylation ability of the protein. These results demonstrate that a novel modification of ribosomal protein P2 allows it to act as an acyl carrier protein and participate in acylation reactions.  相似文献   
77.
In contrast to bioreactors the metabolites within the microbial cells are converted in an impure atmosphere, yet the productivity seems to be well regulated and not affected by changes in operation variables. These features are attributed to integral metabolic network within the microorganism. With the advent of neo-integrative proteomic approaches the understanding of integration of metabolic and protein-protein interaction networks have began. In this article we review the methods employed to determine the protein-protein interaction and their integration to define metabolite networks. We further present a review of current understanding of network properties, and benefit of studying the networks. The predictions using network structure, for example, in silico experiments help illustrate the importance of studying the network properties. The cells are regarded as complex system but their elements unlike complex systems interact selectively and nonlinearly to produce coherent rather than complex behaviors.  相似文献   
78.
In trol mutants, neuroblasts fail to exit G1 for S phase. Increasing string expression in trol mutants rescues the number of S phase neuroblasts without an increase in M phase neuroblasts. Decreasing string expression further decreased the number of S phase neuroblasts. Coexpression of cyclin E and string did not produce additional S phase cells. Unlike cyclin E, cdk2, and cdk2AF, elevated expression of neither cyclin A, cyclin D, nor cdk1AF was able to promote S phase progression in arrested neuroblasts, indicating that String-induced activity of a Cyclin A or Cyclin D complex is unlikely to drive trol neuroblasts into S phase. Biochemical analyses revealed a rapid increase of Cyclin E-Cdk2 kinase activity to wild-type levels upon increased string expression. These results suggest that Drosophila Cdc25 may directly or indirectly increase the kinase activity of Cyclin E-Cdk2 complexes in vivo, thus driving arrested neuroblasts into cell division.  相似文献   
79.
In the context of fibroblast growth factor (FGF) signaling, Sprouty2 (Spry2) is the most profound inhibitor of the Ras/ERK pathway as compared with other Spry isoforms. An exclusive, necessary, but cryptic PXXPXR motif in the C terminus of Spry2 is revealed upon stimulation. The activation of Spry2 appears to be linked to sequences in the N-terminal half of the protein and correlated with a bandshifting seen on SDS-PAGE. The band-shifting is likely caused by changes in the phosphorylation status of key Ser and Thr residues following receptor stimulation. Dephosphorylation of at least two conserved Ser residues (Ser-112 and Ser-115) within a conserved Ser/Thr sequence is accomplished upon stimulation by a phosphatase that binds to Spry2 around residues 50-60. We show that human Spry2 co-immunoprecipitates with both the catalytic and the regulatory subunits of protein phosphatase 2A (PP2A-C and PP2A-A, respectively) in cells upon FGF receptor (FGFR) activation. PP2A-A binds directly to Spry2, but not to Spry2Delta50-60 (Delta50-60), and the activity of PP2A increases with both FGF treatment and FGFR1 overexpression. c-Cbl and PP2A-A compete for binding centered around Tyr-55 on Spry2. We show that there are at least two distinct pools of Spry2, one that binds PP2A and another that binds c-Cbl. c-Cbl binding likely targets Spry2 for ubiquitin-linked destruction, whereas the phosphatase binding and activity are necessary to dephosphorylate specific Ser/Thr residues. The resulting change in tertiary structure enables the Pro-rich motif to be revealed with subsequent binding of Grb2, a necessary step for Spry2 to act as a Ras/ERK pathway inhibitor in FGF signaling.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号