首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   10篇
  国内免费   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   6篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   5篇
  1978年   2篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
71.
Abstract— The incorporation of 14C into amino acids of the brain was determined at different times after injection of [U-14C]glucose and [U-14C]ribose to rats maintained on thiamine-supplemented and thiamine-deficient diets for 22 days.
The 14C-content of amino acids in the brain of thiamine-deficient rats decreased at times 2–10 min after injection of [U-14C]glucose. but it increased at 2 min and decreased at times 5–10 min after injection of [U-14C]ribose.
The results of labelling of amino acids indicated that the activities in vivo of the thiamine pyrophosphate requiring enzymes, pyruvate oxidase, a-oxoglutarate dehydrogenase and transketolase were similar in the two groups. It was suggested that the observed decrease in the labelling of amino acids was due to one or more of the following factors: (i) a decrease in the activities of glycolytic enzymes catalysing the conversion of glucose into triose phosphate; (ii) a decrease in the transport of substrate to the active site of the enzymes; or (iii) altered neurohistopathology of the brain.
Thiamine deficiency in rats showed a 5% decrease in glutamate ( P < 0–05), 46% decrease in threonine (P < 0001) and 16% increase in glycine ( P < 0–01) content of the brain.  相似文献   
72.
73.
Abstract— [U-14C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14C in the free sugars decreased from 24 to 3 per cent, while the 14C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate.  相似文献   
74.
Abstract— Thiamine deficiency produced by administration of pyrithiamine to rats maintained on a thiamine-deficient diet resulted in a marked disturbance in amino acid and glucose levels of the brain. In the two pyrithiamine-treated groups of rats (Expt. A and Expt. B) there was a significant decrease in the levels of glutamate (23%, 9%) and aspartate (42%, 57%), and an increase in the levels of glycine (26%, 27%) in the brain, irrespective of whether the animals showed signs of paralysis (Expt. A) or not (Expt. B). as a result of thiamine deficiency. A significant decrease in the levels of γ-aminobutyrate (22%) and serine (28%) in the brain was also observed in those pyrithiamine-treated rats which showed signs of paralysis (Expt. A). Threonine content increased by 57% in Expt. A and 40% in Expt. B in the brain of pyrithiamine-treated rats, but these changes were not statistically significant. The utilization of [U-14C]glucose into amino acids decreased and accumulation of glucose and [U-14C]glucose increased significantly in the brain after injection of [U-14C]glucose to pyrithiamine-treated rats which showed abnormal neurological symptoms (Expt. A). The decrease in 14C-content of amino acids was due to decreased conversion of [U-14C]glucose into alanine, glutamate, glutamine, aspartate and γ-aminobutyrate. The flux of [14C]glutamate into glutamine and γ-aminobutyrate also decreased significantly only in the brain of animals paralysed on treatment with pyrithiamine. The decrease in the labelling of, amino acids was attributed to a decrease in the activities of pyruvate dehydrogenase and α-oxoglutarate dehydrogenase in the brain of pyrithiamine-treated rats. The measurement of specific radioactivity of glucose, glucose-6-phosphate and lactate also indicated a decrease in the activities of glycolytic enzymes in the brain of pyrithiamine-treated animals in Expt. A only. It was suggested that an alteration in the rate of oxidation in vivo of pyruvate in the brain of thiamine-deficient rats is controlled by the glycolytic enzymes, probably at the hexokinase level. The lack of neurotoxic effect and absence of significant decrease in the metabolism of [U-14C]glucose in the brain of pyrithiamine-treated animals in Expt. B were probably due to the fact that animals in Expt. B were older and weighed more than those in Expt. A, both at the start and the termination of the experiments.  相似文献   
75.
1. Glycosidic linkage of carbohydrate to the primary hydroxyl groups of threonine and serine has been established in human blood-group A and Le(a) substances, bovine submaxillary-gland mucin and human pseudomyxomatous mucin. 2. Treatment of these substances in 0.09n-lithium hydroxide at 100 degrees for 1hr. led to beta-elimination at these glycosidic linkages with the resultant formation of alpha-oxobutyric acid and glycine from threonine linkages, and pyruvic acid from serine linkages. Though most of the threonine was destroyed in every case, about one-third to one-half of the serine residues resisted alkaline cleavage. Such results, indicative of the presence of unbound serine residues, allow, in submaxillary mucin, for a close correlation between the remaining serine, threonine, glutamic acid and aspartic acid and the available sialyl-(2-->6)-N-acetylgalactosamine prosthetic groups. 3. The stoichiometry of the beta-eliminations has been demonstrated for pseudomyxomatous mucin. The alpha-oxo acids were separated and determined as their quinoxalinol derivatives by thin-layer chromatography on silica gel. Reaction at the threonine centres favoured alpha-oxobutyric acid formation (70%, via the intermediary dehydropeptide) over the alternative pathway to glycine (30%). 4. 100% of the hexosamine was destroyed in submaxillary-gland mucin, 85% in pseudomyxomatous mucin and about 60% in the blood-group substances. In the latter cases, the glucosamine/galactosamine ratio was increased from about 4:1 to 8-10:1, suggesting a preferential destruction of galactosamine. Evidence was obtained, however, for a further destruction of hexosamine, in addition to that which could be theoretically attached to peptide at possible known binding sites. 5. The major part of the alkali-resistant hexosamine in the blood-group substances was non-diffusible and was accompanied by the constituent carbohydrates in similar molar proportions to the native materials.  相似文献   
76.
Treatment of rats with 6-aminonicotinamide showed a small but significant decrease in the labeling of amino acids in the brain after injection of [3H]acetate. The results of these experiments also gave evidence of the presence of [3H]glucose and [3H]lactate, and an increase in [3H]glucose content in the brain of 6-aminonicotinamide treated rats. To apportion the contribution of [3H]glucose formed by gluconeogenesis from [3H]acetate to the labeling of amino acids a method was formulated based on the measurement of radioactivity of amino acids, lactate and free sugars in brain after injection of [6-3H]glucose or [1-3H]glucose relative to that after co-injection of [U-14C]glucose or [2-14C]glucose. In contrast to the expected formation of [1, 6-3H]glucose by gluconeogenesis from [3H]acetate,3H-labeled glucose isolated from brain, blood and liver showed the presence of [6-3H]glucose only. The values corrected for the presence of [6-3H]glucose showed that treatment with 6-aminonicotinamide had no effect on the labeling of amino acids by oxidation of [3H]acetate. These findings indicated that a significant decrease in the labeling of amino acids from [U-14C]glucose reported previously and again confirmed using [1-3H], [6-3H], [2-14C] or [U-14C]glucose in the present investigation was not due to the inhibition of the activities of enzymes of the citric acid cycle. These results support the postulated role of the hexosemonophosphate shunt for the utilization of glucose in providing neurotransmitter amino acids glutamate and -aminobutyrate.Dedicated to Professor K. A. C. Elliott on his 80th birthday.  相似文献   
77.
The brains of rats paralysed at 4 hr after the administration of 6-aminonicotinamide were found to contain decreased levels of glutamate and -aminobutyrate. The glucose content of the brain of the treated rats was several fold higher than in controls. The incorporation of14C into brain amino acids at 30 min after the injection of [U-14C]glucose was decreased by 16%: this was attributed to mainly decreased labeling of glutamate and associated amino acids. The results are discussed in the light of previous findings that the administration of 6-aminonicotinamide resulted in the blockade of the direct oxidation of glucose by the pentose phosphate pathway.  相似文献   
78.

Background  

Modelling proteins with multiple domains is one of the central challenges in Structural Biology. Although homology modelling has successfully been applied for prediction of protein structures, very often domain-domain interactions cannot be inferred from the structures of homologues and their prediction requiresab initiomethods. Here we present a new structural prediction approach for modelling two-domain proteins based on rigid-body domain-domain docking.  相似文献   
79.

Background

Although the pathophysiological defect in primary ciliary dyskinesia (PCD; Siewert's / Kartagener's syndrome) is now well characterised, there are few studies of the impact of the condition upon health function, particularly in later life. This study assesses the health impact of the condition in a large group of patients. In addition, it assesses the similarity in age of diagnosis, symptoms and problems of those with situs inversus (PCD-SI) and those with situs solitus (PCD-SS).

Methods

Postal questionnaire sent to members of the UK Primary Ciliary Dyskinesia Family Support Group. The questionnaire contained the St. George's Respiratory Questionnaire (SGRQ) and the SF-36 questionnaire for assessing health status.

Results

93 questionnaires were returned, representing a 66% response rate. Replies were received from similar numbers of PCD-SI and PCD-SS. Individuals with PCD-SI did not show a significant tendency to be diagnosed earlier, and neither did they show any difference in their symptoms, or the relationship of symptoms to age. Respiratory symptoms were fairly constant up until the age of about 25, after which there was a slow increase in symptoms, and a decline in health status, patients over the age of 40 being about one and a half standard deviations below the mean on the physical component score of the PCS. Patients diagnosed earlier in life, and hence who had received more treatment for their condition, had better scores on the SGRQ Impact and Activity scores.

Conclusions

PCD is a chronic condition which has a progressively greater impact on health in the second half of life, producing significant morbidity and restriction of life style. Early diagnosis, and hence earlier treatment, may improve symptoms and the impact of the condition.  相似文献   
80.
Ralstonia solanacearum is an economically important, bacterial plant pathogen which affects a wide range of crop plants. R. solanacearum survives in the soil for many years and weeds serve as symptomless carrier. One of the important aspects in controlling R. solanacearum is its early detection. In this study, detection threshold of R. solanacearum in the soil was standardised using polymerase chain reaction (PCR) method. The minimum threshold limit ranged between 6.8 × 10 and 3.6 × 102 CFU g?1 of soil. Using this standardised protocol R. solanacearum was detected from the rhizosphere soil of eggplants showing varying degrees of wilt. PCR method was quite sensitive to detect R. solanacearum from the xylem fluid of eggplant. Presence of R. solanacearum in the soil infected with capsicum wilt was also demonstrated successfully and the minimum detection limit was 4 × 102 CFU g?1 of soil. The bacterium was not detected from the eggplant seeds collected during 2006 and 2007 seasons. However, the bacterium was detected from the weed (Alternanthera sessilis) grown in the eggplant field indicating the possibility of weeds serving as symptomless carrier. Using our method, it is possible to detect R. solanacearum from soil, plant and weeds grown in the field at an early stage so that proper management strategies could be taken to prevent the infection and further spread of the pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号