首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   9篇
  国内免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   7篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   10篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
  1960年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
41.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   
42.
Abstract— Neurosecretory cells (bag cells and R3–14 neurons) in the abdominal ganglion of Aplysia californica were 'pulse-chased' in [3H]leucine and comparisons of the labeled protein profiles from the total cell homogenate versus a crude 'neurosecretory granule' fraction on acid-urea polyacrylamide gels were made, The data provides indirect support for the hypothesis that some of the post-translational processing of the neurosecretory proteins occurs intragranularly (L oh et al , 1975). In the case of the Bag cells the initial processing of the 29,000 daltons precursor appears to occur extragranularly, possibly in the rough endoplasmic reticulum cisternae.  相似文献   
43.
The proteins in the perfusate collected from intracellularly perfused squid giant axons were analyzed after being labeled with radioactive 125I-labeled Bolton-Hunter reagent. The rate of protein release into the perfusate was found to be increased by the following electrophysiological manipulations of the axons: (1) repetitive electrical stimulation at 60 Hz in axons perfused with normal potassium fluoride-containing solution or at 0.125 Hz in axons perfused with tetraethylammonium containing solution, (2) perfusion with 4-amino-pyridine solution which induces spontaneous electrical activity in the axon, and (3) depolarization of the axon induced by raising the external potassium concentration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the proteins released under these conditions yielded molecular weight profiles different from those of the extruded axoplasmic proteins. These observations indicate that there exists, in close association with the axonal membrane, a particular group of proteins, the solubility of which is readily affected by changes in the state of the membrane.  相似文献   
44.
The effects of cell density as well as the concentration levels of glucose and glutamine on the specific respiration rate of a hybridoma cell line were investigated. The experimental oxygen consumption rate was found to be constant over a wide range of dissolved oxygen levels if the suspension medium contained glutamine. In glutamine-free medium, however, the rate of oxygen consumption decreased slowly with time.In a stationary flask batch culture, the specific respiration rate decreased from about 7 to 2.9 mumol/min per 10(9) cells as the cell density increased exponentially from 1 x 10(5) to 1.2 x 10(6)/mL. To isolate the effect of cell density, cells were re suspended in fresh culture medium so that nutrient concentrations were the same for all experiments. The specific respiration rate decreased with increasing cell density in the same manner as in the stationary flask culture, falling from 8 to 4 mumol/min per 10(9) cells as the cell density increased from 10(5) to 10(6) cells/mL, then declining to 2 mumol/min per 10(9) cells when the cell density reached 10(7) cells/mL.Cells suspended in Hanks balanced sale solution (HBSS) were used to elucidate the effect of glucose and glutamine levels on respiration. The addition of glucose in concentrations of 0.25, 0.50, and 0.75 g/L had no observable effect on the specific oxygen uptake rate; however, a glucose concentration of 1 g/L reduced the uptake rate by 22%. Glutamine in a concentration of 0.30 g/L increased the specific respiration rate in HBSS containing 0 and 1 g/L glucose by approximately 13%.  相似文献   
45.
The response of hybridoma cells to fluid shear caused by stirring and sparging has been investigated in a 2-L turbine-agitated bioreactor. Viable cell count, lactate dehydrogenase (LDH) release, and antibody secretion were measured over the course of batch culture experiments under varied conditions of stirring and gas sparging. The effectiveness of Pluronic F68 as a protective agent in sparged cultures was also studied. Growth was found to be unaffected by stirring of the culture under surface aerated conditions, but gas sparging had a significant detrimental effect on growth and antibody production. The effect of sparging was reduced when cultures were supplemented with Pluronic at a level of 0.4% (w/v). Experimental data were analyzed through formulation of models for LDH release and antibody production. Rates of cell lysis could be estimated by correlating extracellular LDH levels through the model for LDH release. The lysis rate estimated for sparged conditions was sufficiently large to approximately account for the observed decrease in the specific growth rate of the culture. The presence of Pluronic apparently interfered with the LDH release mechanism, so precise estimation of lysis rates under these conditions was not possible. Sparging was found not to have a detrimental effect on antibody production in cultures without Pluronic added. Specific antibody production rates in cultures supplemented with Pluronic were about 25% higher than in sparged cultures without Pluronic added.  相似文献   
46.
Y P Loh  H Gainer 《Life sciences》1982,31(26):3043-3050
The influence of glycosylation of a prohormone, pro-opiocortin, on its processing by intermediate (pituitary) lobe converting enzyme activity in vitro was studied. [3H]-arginine-labeled glycosylated and non-glycosylated pro-opiocortins were isolated from untreated, and tunicamycin treated toad neurointermediate lobes, respectively, after pulse-labeling in [3H]-arginine containing incubation media. These labeled precursors were then incubated at 37 degrees C in the presence of pro-opiocortin converting enzyme activity derived from rat intermediate lobe (pituitary) secretory granule lysates. The rates of conversion of the glycosylated and nonglycosylated pro-opiocortins to smaller peptide products, in vitro, were similar. Analysis of the peptide products by immunoprecipitation with ACTH and beta-endorphin antisera, and subsequent electrophoresis on acid-urea gels, indicate a comparable processing in vitro of the two forms of pro-opiocortin substrate. The only difference was that the normally glycosylated peptide products derived from glycosylated pro-opiocortin (i.e., 13K ACTH, 21K ACTH, and the 16K glycopeptide) differed in their gel electrophoretic mobilities from their counterparts derived from nonglycosylated prohormone, in a manner consistent with the absence of carbohydrate on the latter's peptides. These data show that glycosylation of the prohormone does not influence its processing in vitro by the converting enzyme activity.  相似文献   
47.
Membrane-Associated Cytoskeletal Proteins in Squid Giant Axons   总被引:2,自引:1,他引:1  
Abstract: Cytoskeletal proteins (e.g., tubulin, actin, and neurofilament proteins) in the squid giant axon are separable into KF-soluble and -insoluble forms. The KF-insoluble cytoskeletal components appear to constitute the major proteins in the subaxolemmal fibrous network on the inner surface of the axon. These cytoskeletal proteins and the subaxolemmal network are both highly soluble in KI solutions. Whereas giant axons tolerate prolonged perfusions in KF solutions with no loss of excitable properties, a relatively short perfusion with KI solution completely eliminates the excitability of the axon. The loss of this excitability correlates with the simultaneous dissolution of the subaxolemmal network of cytoskeletal proteins and the release of its proteins into the perfusate. These data support the hypothesis that cytoskeletal proteins associated with the inner surface of the axolemma are involved in the regulation of axonal excitability.  相似文献   
48.

Background

Typically, algorithms to classify phenotypes using electronic medical record (EMR) data were developed to perform well in a specific patient population. There is increasing interest in analyses which can allow study of a specific outcome across different diseases. Such a study in the EMR would require an algorithm that can be applied across different patient populations. Our objectives were: (1) to develop an algorithm that would enable the study of coronary artery disease (CAD) across diverse patient populations; (2) to study the impact of adding narrative data extracted using natural language processing (NLP) in the algorithm. Additionally, we demonstrate how to implement CAD algorithm to compare risk across 3 chronic diseases in a preliminary study.

Methods and Results

We studied 3 established EMR based patient cohorts: diabetes mellitus (DM, n = 65,099), inflammatory bowel disease (IBD, n = 10,974), and rheumatoid arthritis (RA, n = 4,453) from two large academic centers. We developed a CAD algorithm using NLP in addition to structured data (e.g. ICD9 codes) in the RA cohort and validated it in the DM and IBD cohorts. The CAD algorithm using NLP in addition to structured data achieved specificity >95% with a positive predictive value (PPV) 90% in the training (RA) and validation sets (IBD and DM). The addition of NLP data improved the sensitivity for all cohorts, classifying an additional 17% of CAD subjects in IBD and 10% in DM while maintaining PPV of 90%. The algorithm classified 16,488 DM (26.1%), 457 IBD (4.2%), and 245 RA (5.0%) with CAD. In a cross-sectional analysis, CAD risk was 63% lower in RA and 68% lower in IBD compared to DM (p<0.0001) after adjusting for traditional cardiovascular risk factors.

Conclusions

We developed and validated a CAD algorithm that performed well across diverse patient populations. The addition of NLP into the CAD algorithm improved the sensitivity of the algorithm, particularly in cohorts where the prevalence of CAD was low. Preliminary data suggest that CAD risk was significantly lower in RA and IBD compared to DM.  相似文献   
49.
The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), not only damages crops, but controlling its population also requires synthetic insecticides, which leads to selection of resistant populations and environmental contamination. Essential oils are an alternative for controlling this insect. There are few studies of the effects of these oils on the insect's reproductive system. We evaluated the effects of the long pepper, Piper hispidinervum, essential oil on the gonads of the armyworm and tested its possible influence on the fertility of this insect. Dosages of 30 and 50 mg/ml were tested in 3rd instar caterpillars using the leaf immersion method. Testes and ovarioles were collected, fixed with 10% formalin and embedded in Historesin. The sections were stained with toluidine blue and Mallory trichrome to detect connective tissue, periodic acid-Schiff to detect neutral carbohydrates, and bromophenol blue to detect proteins. We found that the long pepper essential oil affected negatively the spermatogenesis and altered the histochemistry of the ovarioles of S. frugiperda. The effects of long pepper oil suggest that it is a promising tool for controlling the armyworm pest.  相似文献   
50.
Calcium/Calmodulin-Dependent Protein Kinase II in Squid Synaptosomes   总被引:2,自引:1,他引:2  
The Ca2+/calmodulin (CaM)-dependent protein kinase II system in squid nervous tissue was investigated. The Ca2+/CaM-dependent protein kinase II was found to be very active in the synaptosome preparation from optic lobe, where it was associated with the high-speed particulate fraction. Incubation of the synaptosomal homogenate with calcium, calmodulin, magnesium, and ATP resulted in partial and reversible conversion of the Ca2+/CaM-dependent protein kinase II from its calcium-dependent form to a calcium-independent species. The magnitude of this conversion reaction could be increased by inclusion of the protein phosphatase inhibitor NaF or by substitution of adenosine 5'-O-(3-thiotriphosphate) for ATP. When [gamma-32P]ATP was used, proteins of 54 and 58 kilodaltons (kDa) as well as proteins greater than 100 kDa were rapidly 32P-labeled in a calcium-dependent manner. Major 125I-CaM binding proteins in the synaptosome membrane fraction were 38 and 54 kDa. The Ca2+/CaM-dependent protein kinase II was purified from the squid synaptosome and was shown to consist of 54- and 58-60-kDa subunits. The purified kinase, like Ca2+/CaM-dependent protein kinase II from rat brain, catalyzed autophosphorylation associated with formation of the calcium-independent form. These studies, characterizing the Ca2+/CaM-dependent protein kinase II in squid neural tissue, are supportive of the putative role of this kinase in regulating calcium-dependent synaptic functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号