首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   2篇
  89篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   8篇
  2013年   4篇
  2012年   9篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   2篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
71.
Although ions play important roles in the cell and chloroplast metabolism, little is known about ion transport across the chloroplast envelope. Using a proteomic approach specifically targeted to the Arabidopsis chloroplast envelope, we have identified HMA1, which belongs to the metal-transporting P1B-type ATPases family. HMA1 is mainly expressed in green tissues, and we validated its chloroplast envelope localization. Yeast expression experiments demonstrated that HMA1 is involved in copper homeostasis and that deletion of its N-terminal His-domain partially affects the metal transport. Characterization of hma1 Arabidopsis mutants revealed a lower chloroplast copper content and a diminution of the total chloroplast superoxide dismutase activity. No effect was observed on the plastocyanin content in these lines. The hma1 insertional mutants grew like WT plants in standard condition but presented a photosensitivity phenotype under high light. Finally, direct biochemical ATPase assays performed on purified chloroplast envelope membranes showed that the ATPase activity of HMA1 is specifically stimulated by copper. Our results demonstrate that HMA1 offers an additional way to the previously characterized chloroplast envelope Cu-ATPase PAA1 to import copper in the chloroplast.  相似文献   
72.
Ectopic lipid accumulation is now known to be a mechanism that contributes to organ injury in the context of metabolic diseases. In muscle and liver, accumulation of lipids impairs insulin signaling. This hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, aging and lipodystrophy. Increasing data suggest that lipid accumulation in the kidneys could also contribute to the alteration of kidney function in the context of metabolic syndrome and obesity. Furthermore and more unexpectedly, animal models of kidney disease exhibit a decreased adiposity and ectopic lipid redistribution suggesting that kidney disease may be a state of lipodystrophy. However, whether this abnormal lipid partitioning during chronic kidney disease (CKD) may have any functional impact in these tissues needs to be investigated.  相似文献   
73.
IL-27 induces stronger proliferation of naive than memory human B cells and CD4(+) T cells. In B cells, this differential response is associated with similar levels of IL-27 receptor chains, IL-27Rα and gp130, in both subsets and stronger STAT1 and STAT3 activation by IL-27 in naive B cells. Here, we show that the stronger proliferative response of CD3-stimulated naive CD4(+) T cells to IL-27 is associated with lower levels of IL-27Rα but higher levels of gp130 compared with memory CD4(+) T cells. IL-27 signaling differs between naive and memory CD4(+) T cells, as shown by more sustained STAT1, -3, and -5 activation and weaker activation of SHP-2 in naive CD4(+) T cells. In the latter, IL-27 increases G0/G1 to S phase transition, cell division and, in some cases, cell survival. IL-27 proliferative effect on naive CD4(+) T cells is independent of MAPK, but is dependent on c-Myc and Pim-1 induction by IL-27 and is associated with induction of cyclin D2, cyclin D3, and CDK4 by IL-27 in a c-Myc and Pim-1-dependent manner. In BCR-stimulated naive B cells, IL-27 only increases entry in the S phase and induces the expression of Pim-1 and of cyclins A, D2, and D3. In these cells, inhibition of Pim-1 inhibits IL-27 effect on proliferation and cyclin induction. Altogether, these data indicate that IL-27 mediates proliferation of naive CD4(+) T cells and B cells through induction of both common and distinct sets of cell cycle regulators.  相似文献   
74.
Diversity of Heterolobosea (Excavata) in environments is poorly understood despite their ecological occurrence and health-associated risk, partly because this group tends to be under-covered by most universal eukaryotic primers used for sequencing. To overcome the limits of the traditional morpho-taxonomy-based biomonitoring, we constructed a primer database listing existing and newly designed specific primer pairs that have been evaluated for Heterolobosea 18S rRNA sequencing. In silico taxonomy performance against the current SILVA SSU database allowed the selection of primer pairs that were next evaluated on reference culture amoebal strains. Two primer pairs were retained for monitoring the diversity of Heterolobosea in freshwater environments, using high-throughput sequencing. Results showed that one of the newly designed primer pairs allowed species-level identification of most heterolobosean sequences. Such primer pair could enable informative, cultivation-free assays for characterizing heterolobosean populations in various environments.  相似文献   
75.
Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence). As some of them can efficiently deal with large single-locus datasets, they could speed up the process of species discovery compared to more time consuming molecular methods, and benefit from the existence of large public datasets; these methods can also particularly favour scientific research and actions dealing with threatened or economically important taxa. In this study we aim to investigate and clarify the status of economically important moths species belonging to the genus Spodoptera (Lepidoptera, Noctuidae), a complex group in which previous phylogenetic analyses and integrative approaches already suggested the possible occurrence of cryptic species and taxonomic ambiguities. In this work, the effectiveness of innovative (and faster) species delimitation approaches to infer putative species boundaries has been successfully tested in Spodoptera, by processing the most comprehensive dataset (in terms of number of species and specimens) ever achieved; results are congruent and reliable, irrespective of the set of parameters and phylogenetic models applied. Our analyses confirm the existence of three potential new species clusters (for S. exigua (Hübner, 1808), S. frugiperda (J.E. Smith, 1797) and S. mauritia (Boisduval, 1833)) and support the synonymy of S. marima (Schaus, 1904) with S. ornithogalli (Guenée, 1852). They also highlight the ambiguity of the status of S. cosmiodes (Walker, 1858) and S. descoinsi Lalanne-Cassou & Silvain, 1994. This case study highlights the interest of molecular species delimitation methods as valuable tools for species discovery and to emphasize taxonomic ambiguities.  相似文献   
76.
Hydrogen production was accomplished under visible-light irradiation by using a system consisting of a biomolecule (chlorophyll a), methylviologen, ethylenediaminetetraacetic acid disodium salt and Pt-loaded poly(l-glutamate) (Poly(Glu)), in aqueous decylammonium chloride (DeAC) solution. Spectroscopic studies revealed that chlorophyll a is solubilized in the hydrophobic clusters of Pt-loaded Poly(Glu)-decylammonium chloride. In the Poly(Glu)-DeAC complex, the electron transfer occurred between chlorophyll a and methylviologen leading to hydrogen production. The most noticeable result is that the rate of hydrogen evolution depends on the change from the random coil to the alpha-helix in conformation of Poly(Glu) induced by the cooperative binding with DeAC.  相似文献   
77.
Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa‐sized microtubule‐embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi‐orientation. We show that Dam1c and the general microtubule plus end‐associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c‐Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c‐Bim1 binding by relieving an intramolecular inhibition of the Dam1 C‐terminus. In addition, Bim1 recruits Bik1/CLIP‐170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end‐on attachments are formed during the process of attachment error correction.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号