首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3323篇
  免费   352篇
  2022年   22篇
  2021年   49篇
  2020年   32篇
  2019年   33篇
  2018年   44篇
  2017年   47篇
  2016年   65篇
  2015年   107篇
  2014年   116篇
  2013年   154篇
  2012年   201篇
  2011年   199篇
  2010年   146篇
  2009年   114篇
  2008年   172篇
  2007年   168篇
  2006年   150篇
  2005年   156篇
  2004年   148篇
  2003年   149篇
  2002年   140篇
  2001年   63篇
  2000年   57篇
  1999年   71篇
  1998年   44篇
  1997年   55篇
  1996年   39篇
  1995年   50篇
  1994年   34篇
  1993年   42篇
  1992年   51篇
  1991年   56篇
  1990年   49篇
  1989年   44篇
  1988年   33篇
  1987年   31篇
  1986年   35篇
  1985年   42篇
  1984年   35篇
  1983年   36篇
  1982年   37篇
  1981年   31篇
  1980年   41篇
  1979年   33篇
  1978年   18篇
  1977年   27篇
  1976年   18篇
  1975年   24篇
  1974年   29篇
  1973年   21篇
排序方式: 共有3675条查询结果,搜索用时 15 毫秒
71.
72.
Induction of photosynthesis in leaves was prolonged, and steadystate photosynthesis was inhibited by very high CO2 concentrationswhich cause cytoplasmic acidification. Prolonged exposure tohigh CO2 relieved initially observed inhibition of photosynthesisat least partially. The sensitivity of carbon assimilation tohigh CO2 was different in different plant species. Acidificationby CO2 (or subsequent alkalization) was detected by measuringrapid CO2-release from the tissue and by monitoring fluorescenceof pH-indicating dyes which had been fed to the leaves throughthe petiole. The results indicate that two different mechanismsoperate in leaves to achieve and maintain pH homeostasis. Rapidand efficient pH-adjustment is provided by proton/cation exchangeacross the tonoplast. Slower and less efficient regulation occursby formation or consumption of base. In the presence of highCO2 concentrations, protons are pumped from the cytosol intoalready acidic vacuoles. In turn, vacuolar cations replace exportedprotons in the cytosol permitting bicarbonate accumulation andincreasing the pH of the acidified cytosol. Similarly effectiveand fast proton/cation exchange relieves acid-stress in thechloroplast stroma and permits photosynthesis to proceed withhigh quantum efficiency or high light-saturated rates in thepresence of CO2 concentrations which would, in the absence offast cytoplasmic pH regulation, inhibit photosynthesis. By inference,proton/cation exchange must also occur across the mitochondrialboundary. After cytoplasmic pH adjustment in the presence ofhigh CO2, removal of CO2 results in transient cytoplasmic alkalizationand, subsequently, in the return of cytoplasmic pH values tolevels observed prior to acid-stress. In addition to fast pHregulation by rapid proton/cation exchange across biomembranes,slow base production (e.g. NH3-formation) also contributes torelieving acid stress. Base produced in the presence of highCO2 is rapidly consumed after removal of CO2. Implications of the findings in regard to forest damage by potentiallyacidic air pollutants such as SO2 are briefly discussed. (Received November 8, 1993; Accepted February 3, 1994)  相似文献   
73.
Posttranslational Regulation of Nitrate Reductase in Higher Plants   总被引:13,自引:4,他引:9       下载免费PDF全文
Kaiser WM  Huber SC 《Plant physiology》1994,106(3):817-821
  相似文献   
74.
75.
Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.  相似文献   
76.
Freshwater shrimp dominate the faunal biomass of many headwater tropical streams: however, their role in community organization is unclear. Enclosure/exclosure experiments in a montane Puerto Rican stream examined direct and indirect effects of two dominant taxa of atyid (Atyidae) shrimp, Atya lanipes Holthuis and Xiphocaris elongata Guerin-Meneville. Both shrimp taxa caused significant reductions in sediment cover on rock substrata, reducing sedimentation and enhancing algal biovolume on clay tiles in cages. When tiles incubated in shrimp exclosures for 2 wks were placed outside of cages, atyid shrimp removed 100% of the sediment cover within a 30 min observation period. Atyid shrimp appear to play an important role in stream recovery after high discharge events by rapidly removing sediments and detritus deposited on benthic substrata in pools. We evaluated the mechanism by which A. lanipes influences algae and benthic insects by comparing patterns of algal biomass, taxonomic composition, and insect abundance between shrimp-exclusion and shrimp-presence treatments both with and without manual sediment removal. The shrimp exclusion treatment without manual sediment removal bad significantly lower algal biomass and greater sedimentation than all other treatments. The treatment in which shrimp were excluded but sediment was manually removed, however, accrued almost the same algal biovolume as the shrimp enclosure treatment, supporting the hypothesis that sediment removal enhances the biovolume of understory algal taxa. Algal community composition was similar between stream bottom bedrock exposed to natural densities of shrimp and all experimental treatments for both Atya and Xiphocaris: a diatom community strongly dominated (78–95%) by the adnate taxon, Achnanthes lanceolata Breb ex. Kutz. Atyid shrimp are important in determining the distribution and abundance of benthic insects through both direct and indirect effects. Sessile, retreat-building chironomid larvae (Chironomidae: Diptera) are negatively affected by both A. lanipes and X. elongata, through direct removal by foraging activities and/or indirectly through depression of sediment resources available to larvae for the construction of retreats. In constrast, the mobile grazer, Cloeodes maculipes (Baetidae: Ephemeroptera) was not adversely affected and atyid shrimp have the potential to exert positive indirect effects on this taxon by facilitating its exploitation of algal resources and/or through enhancement of understory algal food resources through sediment removal.  相似文献   
77.
78.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species.  相似文献   
79.
Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1–C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods.  相似文献   
80.
Over-expression of p21 ras-related protein was determined in the plasma by immunoblotting and in the tissue by immuno-histochemistry in a cohort of patients undergoing colonoscopy. In the plasma samples, p21 ras over-expression was detected in: 9% (4/47) of normal controls; 21% (13/61) of individuals with normal colonoscopies but with a prior history of colonic neoplasia; 12% (4/33) of small adenoma patients, 29% (6/21) of large adenoma patients; 63% (5/8) of carcinoma-in-adenoma patients; 50% (2/4) of Dukes' A carcinoma patients; and 20% (2/10) of Dukes' B-D carcinoma patients. In the tissue samples, p21 ras over-expression was detected in: 25% (2/8) of small adenoma patients; 44% (4/9) of large adenoma patients; 100% (4/4) of carcinoma-in-adenoma patients; and 33% (1/3) of Dukes' B-C carcinoma patients. For matched plasma-tissue pairs, there was a statistically significant correlation for p21 ras over-expression (R = 0.47, p = 0.02).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号