首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   5篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   11篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2006年   7篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有91条查询结果,搜索用时 0 毫秒
91.
Particle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images. However, it is not clear whether images generated by these methods yield accurate quantitative measurements such as diffusion parameters in (single) particle tracking experiments. Here, we evaluate the performance of two popular deep learning denoising software packages for particle tracking, using synthetic data sets and movies of diffusing chromatin as biological examples. With synthetic data, both supervised and unsupervised deep learning restored particle motions with high accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in three-dimensional data sets. Experimentally, we found that, while both supervised and unsupervised approaches improved tracking results compared with the original noisy images, supervised learning generally outperformed the unsupervised approach. We find that nicer-looking image sequences are not synonymous with more precise tracking results and highlight that deep learning algorithms can produce deceiving artifacts with extremely noisy images. Finally, we address the challenge of selecting parameters to train convolutional neural networks by implementing a frugal Bayesian optimizer that rapidly explores multidimensional parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study provides quantitative outcome measures of image restoration using deep learning. We anticipate broad application of this approach to critically evaluate artificial intelligence solutions for quantitative microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号