首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   23篇
  国内免费   1篇
  62篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   10篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有62条查询结果,搜索用时 7 毫秒
11.
12.
To study the potential effects of climate change on species, one of the most popular approaches are species distribution models (SDMs). However, they usually fail to consider important species‐specific biological traits, such as species’ physiological capacities or dispersal ability. Furthermore, there is consensus that climate change does not influence species distributions in isolation, but together with other anthropogenic impacts such as land‐use change, even though studies investigating the relative impacts of different threats on species and their geographic ranges are still rare. Here we propose a novel integrative approach which produces refined future range projections by combining SDMs based on distribution, climate, and physiological tolerance data with empirical data on dispersal ability as well as current and future land‐use. Range projections based on different combinations of these factors show strong variation in projected range size for our study species Emberiza hortulana. Using climate and physiological data alone, strong range gains are projected. However, when we account for land‐use change and dispersal ability, future range‐gain may even turn into a future range loss. Our study highlights the importance of accounting for biological traits and processes in species distribution models and of considering the additive effects of climate and land‐use change to achieve more reliable range projections. Furthermore, with our approach we present a new tool to assess species’ vulnerability to climate change which can be easily applied to multiple species.  相似文献   
13.
14.
Although it is generally recognized that global biodiversity is declining, few studies have examined long‐term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5‐year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.  相似文献   
15.
This report reviews the development of a rapidin situ approach to study the physiological responses of bacteria within biofilms to disinfectants. One method utilized direct viable counts (DVC) to assess the disinfection efficacy when thin biofilms were exposed to chlorine or monochloramine. Results obtained using the DVC method were one log higher than plate count (PC) estimates of the surviving population after disinfection. Other methods incorporated the use of fluorogenic stains, a cryotomy technique to yield thin (5-m) sections of biofilm communities and examination by fluorescence microscopy. The fluorogenic stains used in this approach included 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which indicates cellular electron transport activity and Rhodamine 123, which responds specifically to proton motive force. The use of these stains allowed the microscopic discrimination of physiologically active bacteria as well as heterogeneities of active cells within thicker biofilms. The results of experiments using these techniques with pure culture and binary population biofilms on stainless steel coupons indicated biocidal activity of chlorine-based disinfectants occurred initially at the bulk-fluid interface of the communities and progressed toward the substratum. This approach provided a unique opportunity to describe the spatial response of bacteria within biofilms to antimicrobial agents and address mechanisms explaining their comparative resistance to disinfection in a way that has not been possible using traditional approaches. Results obtained using this alternative approach were also consistently higher than PC data following disinfection. These observations suggest that traditional methods involving biofilm removal and bacterial enumeration by colony formation overestimate biocide efficacy. Hence the alternative approach described here more accurately indicates the ability of bacteria surviving disinfection to recover and grow as well as demonstrate spatial heterogeneities in cellular physiological activities within biofilms.  相似文献   
16.
Aim To examine patterns of avian frugivory across clades, geography and environments. Location Global, including all six major biogeographical realms (Afrotropics, Australasia, Indo‐Malaya, Nearctic, Neotropics and Palaearctic). Methods First, we examine the taxonomic distribution of avian frugivory within orders and families. Second we evaluate, with traditional and spatial regression approaches, the geographical patterns of frugivore species richness and proportion. Third, we test the potential of contemporary climate (water–energy, productivity, seasonality), habitat heterogeneity (topography, habitat diversity) and biogeographical history (captured by realm membership) to explain geographical patterns of avian frugivory. Results Most frugivorous birds (50%) are found within the perching birds (Passeriformes), but the woodpeckers and allies (Piciformes), parrots (Psittaciformes) and pigeons (Columbiformes) also contain a significant number of frugivorous species (9–15%). Frugivore richness is highest in the Neotropics, but peaks in overall bird diversity in the Himalayan foothills, the East African mountains and in some areas of Brazil and Bolivia are not reflected by frugivores. Current climate explains more variance in species richness and proportion of frugivores than of non‐frugivores whereas it is the opposite for habitat heterogeneity. Actual evapotranspiration (AET) emerges as the best single climatic predictor variable of avian frugivory. Significant differences in frugivore richness and proportion between select biogeographical regions remain after differences in environment (i.e. AET) are accounted for. Main conclusions We present evidence that both environmental and historical constraints influence global patterns of avian frugivory. Whereas water–energy dynamics possibly constrain frugivore distribution via indirect effects on food plants, regional differences in avian frugivory most likely reflect historical contingencies related to the evolutionary history of fleshy fruited plant taxa, niche conservatism and past climate change. Overall our results support an important role of co‐diversification and environmental constraints on regional assembly over macroevolutionary time‐scales.  相似文献   
17.
Frugivorous birds provide important ecosystem services by transporting seeds of fleshy fruited plants. It has been assumed that seed-dispersal kernels generated by these animals are generally leptokurtic, resulting in little dispersal among habitat fragments. However, little is known about the seed-dispersal distribution generated by large frugivorous birds in fragmented landscapes. We investigated movement and seed-dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in a fragmented landscape in South Africa. Novel GPS loggers provide high-quality location data without bias against recording long-distance movements. We found a very weakly bimodal seed-dispersal distribution with potential dispersal distances up to 14.5 km. Within forest, the seed-dispersal distribution was unimodal with an expected dispersal distance of 86 m. In the fragmented agricultural landscape, the distribution was strongly bimodal with peaks at 18 and 512 m. Our results demonstrate that seed-dispersal distributions differed when birds moved in different habitat types. Seed-dispersal distances in fragmented landscapes show that transport among habitat patches is more frequent than previously assumed, allowing plants to disperse among habitat patches and to track the changing climatic conditions.  相似文献   
18.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   
19.
The responses of animal pollinators to the spatially heterogeneous distribution of floral resources are important for plant reproduction, especially in species‐rich plant communities. We explore how responses of pollinators to floral resources varied across multiple spatial scales and studied the responses of two nectarivorous bird species (Cape sugarbird Promerops cafer, orange‐breasted sunbird Anthobaphes violacea) to resource distributions provided by communities of co‐flowering Protea species (Proteaceae) in South African fynbos. We used highly resolved maps of about 125 000 Protea plants at 27 sites and estimated the seasonal dynamics of standing crop of nectar sugar for each plant to describe the spatiotemporal distribution of floral resources. We recorded avian population sizes and the rates of bird visits to > 1300 focal plants to assess the responses of nectarivorous birds to floral resources at different spatial scales. The population sizes of the two bird species responded positively to the amount of sugar resources at the site scale. Within sites, the effects of floral resources on pollinator visits to plants varied across scales and depended on the resources provided by individual plants. At large scales (radii > 25 m around focal plants), high sugar density decreased per‐plant visitation rates, i.e. plants competed for animal pollinators. At small scales (radii < 5 m around focal plants), we observed either competition or facilitation for pollinators between plants, depending on the sugar amount offered by individual focal plants. In plants with copious sugar, per‐plant visitation rates increased with increasing local sugar density, but visitation rates decreased in plants with little sugar. Our study underlines the importance of scale‐dependent responses of pollinators to floral resources and reveals that pollinators’ responses depend on the interplay between individual floral resources and local resource neighbourhood.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号