首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   13篇
  国内免费   1篇
  2021年   4篇
  2020年   2篇
  2018年   8篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   14篇
  2012年   17篇
  2011年   8篇
  2010年   11篇
  2009年   10篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1978年   2篇
  1971年   2篇
  1969年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
21.
22.
23.
Activating K-RAS mutations occur at a frequency of 90% in pancreatic cancer, and to date no therapies exist targeting this oncogene. K-RAS signals via downstream effector pathways such as the MAPK and the PI3K signaling pathways, and much effort has been focused on developing drugs targeting components of these pathways. To better understand the requirements for K-RAS and its downstream signaling pathways MAPK and PI3K in pancreatic tumor maintenance, we established an inducible K-RAS knock down system that allowed us to ablate K-RAS in established tumors. Knock down of K-RAS resulted in impaired tumor growth in all pancreatic xenograft models tested, demonstrating that K-RAS expression is indeed required for tumor maintenance of K-RAS mutant pancreatic tumors. We further examined signaling downstream of K-RAS, and detected a robust reduction of pERK levels upon K-RAS knock down. In contrast, no effect on pAKT levels could be observed due to almost undetectable basal expression levels. To investigate the requirement of the MAPK and the PI3K pathways on tumor maintenance, three selected pancreatic xenograft models were tested for their response to MEK or PI3K inhibition. Tumors of all three models regressed upon MEK inhibition, but showed less pronounced response to PI3K inhibition. The effect of MEK inhibition on pancreatic xenografts could be enhanced further by combined application of a PI3K inhibitor. These data provide further rationale for testing combinations of MEK and PI3K inhibitors in clinical trials comprising a patient population with pancreatic cancer harboring mutations in K-RAS.  相似文献   
24.
Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days) on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF) activity, anxiety in the elevated-plus maze (EPM), the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test) and entries into the open arms (EPM). Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress.  相似文献   
25.
Podosomes are dynamic actin-based structures found constitutively in cells of monocytic origin such as macrophages, dendritic cells and osteoclasts. They have been involved in osteoclast cell adhesion, motility and matrix degradation, and all these functions rely on the ability of podosomes to form supra-molecular structures called podosome belts or sealing zones on mineralized substrates. Podosomes contain two distinct domains, an actin-rich core enriched in actin polymerization regulators, surrounded by a ring of signaling and plaque molecules. The organization of podosome arrays into belts is linked to actin dynamics. Cofilin is an actin-severing protein that is known to regulate cytoskeleton architecture and cell migration. Cofilin is present in lamellipodia and invadopodia where it regulates actin polymerization. In this report, we show that cofilin is a novel component of the podosome belt, the mature osteoclast adhesion structure. Time-course analysis demonstrated that cofilin is activated during primary osteoclast differentiation, at the time of podosome belt assembly. Immunofluorescence studies reveal a localization of active cofilin in the podosome core structure, whereas phosphorylated, inactive cofilin is concentrated in the podosome cloud. Pharmacological studies unraveled the role of a specific cofilin phosphatase to achieve cofilin activation during osteoclast differentiation. We ruled out the implication of PP1/PP2A and PTEN in this process, and rather provided evidence for the involvement of SSH1. In summary, our data involve cofilin as a regulator of podosome organization that is activated during osteoclast differentiation by a RANKL-mediated signaling pathway targeting the SSH1 phosphatase.  相似文献   
26.
Germline genetics, gender and hormonal-signaling pathways are all well described modifiers of cancer risk and progression. Although an improved understanding of how germline genetic variants interact with other cancer risk factors may allow better prevention and treatment of human cancer, measuring and quantifying these interactions is challenging. In other areas of research, Information Theory has been used to quantitatively describe similar multivariate interactions. We implemented a novel information-theoretic analysis to measure the joint effect of a high frequency germline genetic variant of the p53 tumor suppressor pathway (MDM2 SNP309 T/G) and gender on clinical cancer phenotypes. This analysis quantitatively describes synergistic interactions among gender, the MDM2 SNP309 locus, and the age of onset of tumorigenesis in p53 mutation carriers. These results offer a molecular and genetic basis for the observed sexual dimorphism of cancer risk in p53 mutation carriers and a model is proposed that suggests a novel cancer prevention strategy for p53 mutation carriers.  相似文献   
27.
Trypanosoma cruzi is the kinetoplastid protozoan parasite that causes human Chagas disease, a chronic disease with complex outcomes including severe cardiomyopathy and sudden death. In mammalian hosts, T. cruzi colonises a wide range of tissues and cell types where it replicates within the host cell cytoplasm. Like all intracellular pathogens, T. cruzi amastigotes must interact with its immediate host cell environment in a manner that facilitates access to nutrients and promotes a suitable niche for replication and survival. Although potentially exploitable to devise strategies for pathogen control, fundamental knowledge of the host pathways co‐opted by T. cruzi during infection is currently lacking. Here, we report that intracellular T. cruzi amastigotes establish close contact with host mitochondria via their single flagellum. Given the key bioenergetic and homeostatic roles of mitochondria, this striking finding suggests a functional role for host mitochondria in the infection process and points to the T. cruzi amastigote flagellum as an active participant in pathogenesis. Our study establishes the basis for future investigation of the molecular and functional consequences of this intriguing host–parasite interaction.  相似文献   
28.
This paper analyses the performance of MAbMaxTM/TricentricTM, a new generation hollow fibre bioreactor, for hybridoma growth and antibody productivity, the down stream processing of monoclonal antibody harvests throughout the run and the further control of antibody quality consistency. Handling and process parameters were optimised using a mouse hybridoma, IgG1K secretor, and then confirmed with several other hybridomas. Cells were kept at optimal viability during an unusually long period of time and a continuously high production of antibodies was detected over several months. Foetal bovine serum concentration was reduced to 1\% and the effects of weaning of cells from serum were monitored in terms of cell metabolism and antibody productivity. Antibody harvests collected at regular intervals throughout the run (2 to 12 weeks) were purified using affinity chromatography on a recombinant protein A/G matrix and then analysed in terms of antigen binding properties, isoelectric forms and oligosaccharide structures, in order 1) to control antibody quality consistency as a function of time and serum concentration and 2) to compare antibody characteristics as a function of culture conditions, in vitro bioreactor cultivation versus in vivo mouse ascite cultivation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
29.
The small heat-shock protein αB-crystallin interacts with intermediate filament proteins. Using cosedimentation assay, we showed previously that in vitro binding of αB-crystallin to peripherin and vimentin was temperature-dependent. Furthermore, when NIH 3T3 cells were submitted to different stress conditions a dynamic reorganization of the intermediate filament network was observed concomitantly with the recruitment of αB-crystallins on the intermediate filament proteins. Thus, the intracellular state of αB-crystallin correlated directly with the remodeling of the intermediate filament network in response to stress. Here, we show data suggesting that αB-crystallin is implicated in remodeling of intermediate filaments during cell division. We investigated the intracellular distribution of αB-crystallin in naturally occurring mitotic NIH 3T3 cells and in neuroblastoma N2a and N1E115 cells. In NIH 3T3 cells, αB-crystallin remained diffused throughout the cell cycle. Subcellular fractionation of αB-crystallin showed that αB-crystallin remained in the cytosolic compartment during mitosis. Furthermore, αB-crystallin accumulated in mitotically arrested NIH 3T3 cells. This increased level of αB-crystallin protein was due to an increased level of αB-crystallin mRNA in mitotic NIH 3T3 cells. In the neuroblastoma cells, the intermediate filaments were rearranged into thick cable-like structures and αB-crystallin was recruited onto them. In neuroblastoma N2a cells the level of expression did not change during the cell cycle. However, a small fraction of αB-crystallin switched onto the insoluble fraction in mitotically arrested N2a cells. Our results suggested that depending on the state of rearrangement of the intermediate filament network during mitosis αB-crystallin was either recruited onto the intermediate filaments or upregulated in the cytosolic compartment.  相似文献   
30.
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号