首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   17篇
  201篇
  2022年   2篇
  2020年   1篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   14篇
  2014年   11篇
  2013年   13篇
  2012年   8篇
  2011年   11篇
  2010年   13篇
  2009年   9篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   9篇
  2004年   14篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   9篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
51.
Recombinant hirudin variant rHV2-Lys47 was radioiodinated using the chloramine-T method. Depending on the reaction pH, the two tyrosine residues, Tyr3 and Tyr63, responded differently to iodination but without change in total iodination yield. Of the incorporated -125 iodine 80% was located on Tyr3 at pH 7.4, but 65% was found on Tyr63 at pH 4. These distinct iodination patterns suggest the existence of a pH-dependent multimerization and/or important conformational changes in the tertiary structure with pH. Each radiotracer was purified to high specific activity by simple low-pressure chromatography including gel filtration and reverse-phase separation, both on short cartridges. The method was validated by reverse-phase and anion-exchange HPLC with on-line radioactivity detection. The iodination sites were characterized following carboxypeptidase Y cleavage coupled with radio-HPLC.  相似文献   
52.
Prospects for estimating nucleotide divergence with RAPDs   总被引:11,自引:0,他引:11  
The technique of random amplification of polymorphic DNA (RAPD), which is simply polymerase chain reaction (PCR) amplification of genomic DNA by a single short oligonucleotide primer, produces complex patterns of anonymous polymorphic DNA fragments. The information provided by these banding patterns has proved to be of great utility for mapping and for verification of identity of bacterial strains. Here we consider whether the degree of similarity of the banding patterns can be used to estimate nucleotide diversity and nucleotide divergence. With haploid data, fragments generated by RAPD-PCR can be treated in a fashion very similar to that for restriction-fragment data. Amplification of diploid samples, on the other hand, requires consideration of the fact that presence of a band is dominant to absence of the band. After describing a method for estimating nucleotide divergence on the basis of diploid samples, we summarize the restrictions and criteria that must be met when RAPD data are used for estimating population genetic parameters.   相似文献   
53.
54.
Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes.  相似文献   
55.
56.

Background

Genomic selection is an appealing method to select purebreds for crossbred performance. In the case of crossbred records, single nucleotide polymorphism (SNP) effects can be estimated using an additive model or a breed-specific allele model. In most studies, additive gene action is assumed. However, dominance is the likely genetic basis of heterosis. Advantages of incorporating dominance in genomic selection were investigated in a two-way crossbreeding program for a trait with different magnitudes of dominance. Training was carried out only once in the simulation.

Results

When the dominance variance and heterosis were large and overdominance was present, a dominance model including both additive and dominance SNP effects gave substantially greater cumulative response to selection than the additive model. Extra response was the result of an increase in heterosis but at a cost of reduced purebred performance. When the dominance variance and heterosis were realistic but with overdominance, the advantage of the dominance model decreased but was still significant. When overdominance was absent, the dominance model was slightly favored over the additive model, but the difference in response between the models increased as the number of quantitative trait loci increased. This reveals the importance of exploiting dominance even in the absence of overdominance. When there was no dominance, response to selection for the dominance model was as high as for the additive model, indicating robustness of the dominance model. The breed-specific allele model was inferior to the dominance model in all cases and to the additive model except when the dominance variance and heterosis were large and with overdominance. However, the advantage of the dominance model over the breed-specific allele model may decrease as differences in linkage disequilibrium between the breeds increase. Retraining is expected to reduce the advantage of the dominance model over the alternatives, because in general, the advantage becomes important only after five or six generations post-training.

Conclusion

Under dominance and without retraining, genomic selection based on the dominance model is superior to the additive model and the breed-specific allele model to maximize crossbred performance through purebred selection.  相似文献   
57.

Background

Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction.

Methods

Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values.

Results

Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.

Conclusions

These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.  相似文献   
58.
Interspecific comparisons of microsatellite loci have repeatedly shown that the loci are longer and more variable in the species from which they are derived (the focal species) than are homologous loci in other (nonfocal) species. There is debate as to whether this is due to directional evolution or to an ascertainment bias during the cloning and locus selection processes. This study tests these hypotheses by performing a reciprocal study. Eighteen perfect dinucleotide microsatellite loci identified from a Drosophila simulans library screen and 18 previously identified in an identical Drosophila melanogaster library screen were used to survey natural populations of each species. No difference between focal and nonfocal species was observed for mean PCR fragment length. However, heterozygosity and number of alleles were significantly higher in the focal species than in the nonfocal species. The most common allele in the Zimbabwe population of both species was sequenced for 31 of the 36 loci. The length of the longest stretch of perfect repeat units is, on average, longer in the focal species than in the non-focal species. There is a positive correlation between the length of the longest stretch of perfect repeats and heterozygosity. The difference in heterozygosity can thus be explained by a reduction in the length of the longest stretch of perfect repeats in the nonfocal species. Furthermore, flanking-sequence length difference was noted between the two species at 58% of the loci sequenced. These data do not support the predictions of the directional-evolution hypothesis; however, consistent with the ascertainment bias hypothesis, the lower variability in nonfocal species is an artifact of the microsatellite cloning and isolation process. Our results also suggest that the magnitude of ascertainment bias for repeat unit length is a function of the microsatellite size distribution in the genomes of different species.   相似文献   
59.

Background

Determining an animal’s genetic merit using genomic information can improve estimated breeding value (EBV) accuracy; however, the magnitude of the accuracy improvement must be large enough to recover the costs associated with implementing genome-enabled selection. One way to reduce costs is to genotype nucleus herd selection candidates using a low-density chip and to use high-density chip genotyping for animals that are used as parents in the nucleus breeding herd. The objective of this study was to develop a tool to estimate the cost structure associated with incorporating genome-enabled selection into multi-level commercial breeding programs.

Results

For the purpose of this deterministic study, it was assumed that a commercial pig is created from a terminal line sire and a dam that is a cross between two maternal lines. It was also assumed that all male and female selection candidates from the 1000 sow maternal line nucleus herds were genotyped at low density and all animals used for breeding at high density. With the assumptions used in this analysis, it was estimated that genome-enabled selection costs for a maternal line would be approximately US$0.082 per weaned pig in the commercial production system. A total of US$0.164 per weaned pig is needed to incorporate genome-enabled selection into the two maternal lines. Similarly, for a 600 sow terminal line nucleus herd and genotyping only male selection candidates with the low-density panel, the cost per weaned pig in the commercial herd was estimated to be US$0.044. This means that US$0.21 per weaned pig produced at the commercial level and sired by boars obtained from the nucleus herd breeding program needs to be added to the genetic merit value in order to break even on the additional cost required when genome-enabled selection is used in both maternal lines and the terminal line.

Conclusions

By modifying the input values, such as herd size and genotyping strategy, a flexible spreadsheet tool developed from this work can be used to estimate the additional costs associated with genome-enabled selection. This tool will aid breeders in estimating the economic viability of incorporating genome-enabled selection into their specific breeding program.  相似文献   
60.
From a single aflatoxin B1 oxime — bovine serum albumin conjugate, polyclonal and monoclonal antibody preparations were produced. The four rabbit polyclonal antisera were specific for aflatoxin Bi in a microtitration plate enzyme — linked immunosorbent assay. The monoclonal antibodies showed a wide range of differing specificities, recognizing, for example, aflatoxins B1, B2, G1 and G2; B1 and B2; B1 and G1; and G1 alone. No antibody preparations reacted with aflatoxin M1. The significance of these results to the strategy of anti-aflatoxin antibody production for use in quantitative enzyme immunoassays is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号