全文获取类型
收费全文 | 184篇 |
免费 | 17篇 |
专业分类
201篇 |
出版年
2022年 | 2篇 |
2020年 | 1篇 |
2019年 | 6篇 |
2018年 | 4篇 |
2017年 | 3篇 |
2016年 | 4篇 |
2015年 | 14篇 |
2014年 | 11篇 |
2013年 | 13篇 |
2012年 | 8篇 |
2011年 | 11篇 |
2010年 | 13篇 |
2009年 | 9篇 |
2008年 | 12篇 |
2007年 | 10篇 |
2006年 | 7篇 |
2005年 | 9篇 |
2004年 | 14篇 |
2003年 | 1篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 6篇 |
1999年 | 3篇 |
1998年 | 9篇 |
1997年 | 1篇 |
1996年 | 4篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1978年 | 1篇 |
1977年 | 2篇 |
排序方式: 共有201条查询结果,搜索用时 15 毫秒
101.
We investigated the cytotoxic, neurotoxic, apoptotic and antiproliferative effects of extracts from Petalonia fascia, Jania longifurca and Halimeda tuna on the MCF-7 breast cancer cell line. J. longifurca extracts were more toxic than those of P. fascia and H. tuna. The algal extracts showed significant toxic effects at different dilutions. The toxic effects were due to increased oxidative stress and resulted in apoptosis. Algal toxicity may exert negative effects through the food chain or by direct interaction. Algal toxicity also has potential for cancer therapy. The toxic effects that we observed may be especially important for therapy for breast tumors. 相似文献
102.
Konstantinos Doris Sophia P Karabela Chrysoula A Kairi Davina CM Simoes Charis Roussos Spyros G Zakynthinos Ioannis Kalomenidis Timothy S Blackwell Georgios T Stathopoulos 《Respiratory research》2010,11(1):118
Background
Although the relationship between allergic inflammation and lung carcinogenesis is not clearly defined, several reports suggest an increased incidence of lung cancer in patients with asthma. We aimed at determining the functional impact of allergic inflammation on chemical carcinogenesis in the lungs of mice.Methods
Balb/c mice received single-dose urethane (1 g/kg at day 0) and two-stage ovalbumin during tumor initiation (sensitization: days -14 and 0; challenge: daily at days 6-12), tumor progression (sensitization: days 70 and 84; challenge: daily at days 90-96), or chronically (sensitization: days -14 and 0; challenge: daily at days 6-12 and thrice weekly thereafter). In addition, interleukin (IL)-5 deficient and wild-type C57BL/6 mice received ten weekly urethane injections. All mice were sacrificed after four months. Primary end-points were number, size, and histology of lung tumors. Secondary end-points were inflammatory cells and mediators in the airspace compartment.Results
Ovalbumin provoked acute allergic inflammation and chronic remodeling of murine airways, evident by airspace eosinophilia, IL-5 up-regulation, and airspace enlargement. Urethane resulted in formation of atypical alveolar hyperplasias, adenomas, and adenocarcinomas in mouse lungs. Ovalbumin-induced allergic inflammation during tumor initiation, progression, or continuously did not impact the number, size, or histologic distribution of urethane-induced pulmonary neoplastic lesions. In addition, genetic deficiency in IL-5 had no effect on urethane-induced lung tumorigenesis.Conclusions
Allergic inflammation does not impact chemical-induced carcinogenesis of the airways. These findings suggest that not all types of airway inflammation influence lung carcinogenesis and cast doubt on the idea of a mechanistic link between asthma and lung cancer. 相似文献103.
Postsynaptic density antigens: preparation and characterization of an antiserum against postsynaptic densities 总被引:3,自引:3,他引:3 下载免费PDF全文
Long-term immunization of rabbits with postsynaptic densities (PSD) from bovine brain produced an antiserum specific for PSD as judged by binding to subcellular fractions and immunohistochemical location at the light and electron microscope levels. (a) The major antigens of bovine PSD preparations were three polypeptides of molecular weight 95,000 (PSD-95), 82,000 (PSD-82), and 72,000 (PSD-72), respectively. Antigen PSD-95, also present in mouse and rat PSDs was virtually absent from cytoplasm, myelin, mitochondria, and microsomes from rodent or bovine brain. Antigens PSD-82 and PSD-72 were present in all subcellular fractions from bovine brain, especially in mitochondria, but were almost absent from rodent brain. The antiserum also contained low-affinity antibodies against tubulin. (b)Immunohistochemical studies were performed in mouse and rat brain, where antigen PSD-95 accounted for 90 percent of the antiserum binding after adsorption with purified brain tubulin. At the light microscope level, antibody binding was observed only in those regions of the brain where synapses are known to be present. No reaction was observed in myelinated tracts, in the neuronal cytoplasm, or in nonneuronal cells. Strong reactivity was observed in the molecular layer of the dentate gyrus, stratum oriens and stratum radiatum of the hippocampus, and the molecular layer of the cerebellum. Experimental lesions, such as ablation of the rat entorhinal cortex or intraventricular injection of kainic acid, which led to a major loss of PSD in well- defined areas of the hippocampal formation, caused a correlative decrease in immunoreactivity in these areas. Abnormal patterns of immunohistochemical staining correlated with abnormal synaptic patterns in the cerebella of reeler and staggerer mouse mutants. (c) At the electron microscopic level, immunoreactivity was detectable only in PSD. The antibody did not bind to myelin, mitochondria or plasma membranes. (d) The results indicate that antigen PSD-95 is located predominantly or exclusively in PSD and can be used as a marker during subcellular fractionation. Other potential uses include the study of synaptogenesis, and the detection of changes in synapse number after experimental perturbations of the nervous system. 相似文献
104.
Amerssa Tsirigoti Frithjof C Kuepper Claire MM Gachon Christos Katsaros 《Plant signaling & behavior》2013,8(11)
The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host.Oomycetes are important plant and animal pathogens and are the cause of significant crop losses every year. Hence, a plethora of studies with different cultivated and model plant species investigate the diversity of parasite infection pathways and host defense responses.1 However, little information is available on the interactions between algae and marine oomycetes, despite the epidemic outbreaks reported2 and the huge impact on intensive algal aquaculture.3Eurychasma dicksonii is a biotrophic, intracellular marine oomycete, capable to infect at least 45 species of brown seaweeds in laboratory cultures.4 Molecular data reveal that E. dicksonii has a basal phylogenetic position in the oomycete lineage.5,6 The basic stages of the infection are known: the attachment of the parasite spore to the host cell wall, the penetration of its cytoplasm into the host cell, the formation of a multinucleated, unwalled thallus, and zoosporogenesis.6 Hitherto, though, there was no knowledge about the role of cytoskeleton in the context of infection, which stimulated our research.In land plants, reorganization of the cytoskeleton is part of the reaction to infection by fungal pathogens. The rearrangement of the cytoplasm and the relocation of the nuclei and other organelles are accompanied by rapid rearrangements of the cytoskeletal elements.7 The plant cytoskeleton shows an extreme plasticity in order to serve the intracellular realignment.At the same time, this indicates that the plant cytoskeleton could be the parasite’s target by producing anti-cytoskeletal compounds in an effort to overcome plant resistance, a mechanism known in several fungal and oomycete pathogens of higher plants.8,9Consequently, the changes in microtubule (MT) organization are associated with both the plant defense and/or susceptibility toward oomycetes, respectively.10 Therefore, our research on the organization and role of cytoskeleton in the host and the parasite sheds some light into the enormous variability in the specificity of the recognition, defense, and infection mechanisms. 相似文献
105.
Joseph P McElroy Wuyan Zhang Kenneth J Koehler Susan J Lamont Jack CM Dekkers 《遗传、选种与进化》2006,38(6):637-655
Survival traits and selective genotyping datasets are typically not normally distributed, thus common models used to identify QTL may not be statistically appropriate for their analysis. The objective of the present study was to compare models for identification of QTL associated with survival traits, in particular when combined with selective genotyping. Data were simulated to model the survival distribution of a population of chickens challenged with Marek disease virus. Cox proportional hazards (CPH), linear regression (LR), and Weibull models were compared for their appropriateness to analyze the data, ability to identify associations of marker alleles with survival, and estimation of effects when all individuals were genotyped (full genotyping) and when selective genotyping was used. Little difference in power was found between the CPH and the LR model for low censoring cases for both full and selective genotyping. The simulated data were not transformed to follow a Weibull distribution and, as a result, the Weibull model generally resulted in less power than the other two models and overestimated effects. Effect estimates from LR and CPH were unbiased when all individuals were genotyped, but overestimated when selective genotyping was used. Thus, LR is preferred for analyzing survival data when the amount of censoring is low because of ease of implementation and interpretation. Including phenotypic data of non-genotyped individuals in selective genotyping analysis increased power, but resulted in LR having an inflated false positive rate, and therefore the CPH model is preferred for this scenario, although transformation of the data may also make the Weibull model appropriate for this case. The results from the research presented herein are directly applicable to interval mapping analyses. 相似文献
106.
Yaoxian Xu Ekaterina Bubenshchikova Linda J Newby Jizhe Hao Christelle Gaudioso Marcel Crest Andrei N Lupas Eric Honoré Michael P Williamson Tomoko Obara Albert CM Ong Patrick Delmas 《The EMBO journal》2010,29(7):1176-1191
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin‐1 (PC1) and polycystin‐2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C‐terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self‐oligomerization. Dimerization‐defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM‐endoplasmic reticulum (ER) junctions but could still function as ER Ca2+‐release channels. Expression of dimerization‐defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C‐terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER‐localized PC2 channels. Mutations that affect PC2 C‐terminal homo‐ and heteromerization are the likely molecular basis of cyst formation in ADPKD. 相似文献
107.
Olivier De Clerck Shu-Min Kao Kenny A. Bogaert Jonas Blomme Fatima Foflonker Michiel Kwantes Emmelien Vancaester Lisa Vanderstraeten Eylem Aydogdu Jens Boesger Gianmaria Califano Benedicte Charrier Rachel Clewes Andrea Del Cortona Sofie D’Hondt Noe Fernandez-Pozo Claire M. Gachon Marc Hanikenne John H. Bothwell 《Current biology : CB》2018,28(18):2921-2933.e5
108.
Claire M.M. Gachon Martina Strittmatter Yacine Badis Kyle I. Fletcher Pieter Van West Dieter G. Müller 《欧洲藻类学杂志》2017,52(2):133-148
Using laboratory cultures, we have documented the life cycle of Anisolpidium ectocarpii, a pathogen of Ectocarpus and other filamentous brown algae, and presented preliminary observations on Anisolpidium rosenvingei, a pathogen of Pylaiella littoralis. Consistent with earlier reports, the zoospores of both species have a single anterior flagellum, which justified the placement of Anisolpidium amongst the Hyphochytriales (Hyphochytridiomycota). We have also shown that A. ectocarpii can complete its infection cycle in a broad selection of species from various brown algal orders, whereas A. rosenvingei seemingly exhibits a strict specificity for unilocular sporangia of P. littoralis. Unexpectedly, nuclear (18S rRNA) and mitochondrial (cox1, cox2) markers regroup A. ectocarpii and A. rosenvingei, into a hitherto unrecognized monophyletic clade within the oomycetes (Oomycota), most closely related to the Olpidiopsidales. The Anisolpidium genus is therefore entirely distinct from the Hyphochytridiomycota and represents the first confirmed instance of an anteriorly uniciliate oomycete. Finally, we suggest that a valid morphological criterion to separate true hyphochytrids from oomycetes is the timing of zoospore cleavage. Given the evidence, we propose to transfer the Anisolpidiales from the Hyphochytriales to the Oomycetes. 相似文献
109.
Lucas A Smolders Bj?rn P Meij David Onis Frank M Riemers Niklas Bergknut Richard Wubbolts Guy CM Grinwis Martin Houweling Marian JA Groot Koerkamp Dik van Leenen Frank CP Holstege Herman AW Hazewinkel Laura B Creemers Louis C Penning Marianna A Tryfonidou 《Arthritis research & therapy》2013,15(1):R23
Introduction
Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration.Methods
Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age.Results
Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells.Conclusions
Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration. 相似文献110.
Sonja Melman Ellen NC Schoorel Carmen Dirksen Anneke Kwee Luc Smits Froukje de Boer Madelaine Jonkers Mallory D Woiski Ben Willem J Mol Johannes PR Doornbos Harry Visser Anjoke JM Huisjes Martina M Porath Friso MC Delemarre Simone MI Kuppens Robert Aardenburg Ivo MA Van Dooren Francis PJM Vrouenraets Frans TH Lim Gunilla Kleiverda Paulien CM van der Salm Karin de Boer Marko J Sikkema Jan G Nijhuis Rosella PMG Hermens Hubertina CJ Scheepers 《Implementation science : IS》2013,8(1):1-8