首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   88篇
  2023年   9篇
  2022年   10篇
  2021年   39篇
  2020年   12篇
  2019年   13篇
  2018年   22篇
  2017年   24篇
  2016年   25篇
  2015年   28篇
  2014年   36篇
  2013年   57篇
  2012年   67篇
  2011年   56篇
  2010年   30篇
  2009年   33篇
  2008年   35篇
  2007年   46篇
  2006年   47篇
  2005年   38篇
  2004年   33篇
  2003年   35篇
  2002年   41篇
  2001年   22篇
  2000年   16篇
  1999年   18篇
  1998年   9篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   12篇
  1986年   6篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1974年   2篇
  1971年   1篇
  1962年   1篇
  1910年   1篇
排序方式: 共有915条查询结果,搜索用时 15 毫秒
61.
Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks all biosynthetic enzymes necessary for de novo synthesis of that cofactor. Therefore, growth in vitro requires the presence of NAD itself, NMN, or nicotinamide riboside (NR). To address uptake abilities of these compounds, we investigated outer membrane proteins. By analyzing ompP2 knockout mutants, we found that NAD and NMN uptake was prevented, whereas NR uptake was not. Through investigation of the properties of purified OmpP2 in artificial lipid membrane systems, the substrate specificity of OmpP2 for NAD and NMN was determined, with KS values of approximately 8 and 4mm, respectively, in 0.1 m KCl, whereas no interaction was detected for the nucleoside NR and other purine or pyrimidine nucleotide or nucleoside species. Based on our analysis, we assume that an intrinsic binding site within OmpP2 exists that facilitates diffusion of these compounds across the outer membrane, recognizing carbonyl and exposed phosphate groups. Because OmpP2 was formerly described as a general diffusion porin, an additional property of acting as a facilitator for nicotinamide-based nucleotide transport may have evolved to support and optimize utilization of the essential cofactor sources NAD and NMN in H. influenzae.  相似文献   
62.
Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-terminal region of collagen VI. Chondroadherin, another member of the LRR family, was identified both at the N and C termini of collagen VI. Matrilin-1, -3, and -4 were found in complexes with biglycan or decorin at the N terminus. The interactions between collagen VI, biglycan, decorin, and matrilin-1 were studied in detail and revealed a biglycan/matrilin-1 or decorin/matrilin-1 complex acting as a linkage between collagen VI microfibrils and aggrecan or alternatively collagen II. The complexes between matrilin-1 and biglycan or decorin were also reconstituted in vitro. Colocalization of collagen VI and the different ligands in the pericellular matrix of cultured chondrosarcoma cells supported the physiological relevance of the observed interactions in matrix assembly.  相似文献   
63.
Kindler syndrome is an autosomal recessive disorder characterized by neonatal blistering, sun sensitivity, atrophy, abnormal pigmentation, and fragility of the skin. Linkage and homozygosity analysis in an isolated Panamanian cohort and in additional inbred families mapped the gene to 20p12.3. Loss-of-function mutations were identified in the FLJ20116 gene (renamed “KIND1” [encoding kindlin-1]). Kindlin-1 is a human homolog of the Caenorhabditis elegans protein UNC-112, a membrane-associated structural/signaling protein that has been implicated in linking the actin cytoskeleton to the extracellular matrix (ECM). Thus, Kindler syndrome is, to our knowledge, the first skin fragility disorder caused by a defect in actin-ECM linkage, rather than keratin-ECM linkage.  相似文献   
64.
The supply and consumption of metabolites in living cells are catalyzed by enzymes. Here we consider two of the simplest schemes where one substrate is eliminated through Michaelis-Menten kinetics, and where two types of substrates are joined together by an enzyme. It is demonstrated how steady-state substrate concentrations can change ultrasensitively in response to changes in their supply rates and how this is coupled to slow relaxation back to steady state after a perturbation. In the one-substrate system, such near-critical behavior occurs when the supply rate approaches the maximal elimination rate, and in the two-substrate system it occurs when the rates of substrate supply are almost balanced. As systems that operate near criticality tend to display large random fluctuations, we also carried out a stochastic analysis using analytical approximations of master equations and compared the results with molecular-level Monte Carlo simulations. It was found that the significance of random fluctuations was directly coupled to the steady-state sensitivity and that the two substrates can fluctuate greatly because they are anticorrelated in such a way that the product formation rate displays only small variation. Basic relations are highlighted and biological implications are discussed.  相似文献   
65.
Samuel G  Reeves P 《Carbohydrate research》2003,338(23):2503-2519
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.  相似文献   
66.
The primary influenza A virus-specific CD8(+)-T-cell responses measured by tetramer staining of spleen, lymph node, and bronchoalveolar lavage (BAL) lymphocyte populations were similar in magnitude for conventional I-A(b+/+) and CD4(+)-T-cell-deficient I-A(b-/-) mice. Comparable levels of virus-specific cytotoxic-T-lymphocyte activity were detected in the inflammatory exudate recovered by BAL following challenge. However, both the size of the memory T-cell pool and the magnitude of the recall response in the lymphoid tissues (but not the BAL specimens) were significantly diminished in mice lacking the CD4(+) subset. Also, the rate of virus elimination from the infected respiratory tract slowed at low virus loads following challenge of na?ve and previously immunized I-A(b-/-) mice. Thus, though the capacity to mediate the CD8(+)-T-cell effector function is broadly preserved in the absence of concurrent CD4(+)-T-cell help, both the maintenance and recall of memory are compromised and the clearance of residual virus is delayed. These findings are consistent with mathematical models that predict virus-host dynamics in this, and other, models of infection.  相似文献   
67.
Helix 3 of the Cry1Aa toxin from Bacillus thuringiensis possesses eight charged amino acids. These residues, with the exception of those involved in intramolecular salt bridges (E90, R93, E112, and R115), were mutated individually either to a neutral or to an oppositely charged amino acid. The mutated genes were expressed, and the resultant, trypsin-activated toxins were assessed for their toxicity to Manduca sexta larvae and their ability to permeabilize M. sexta larval midgut brush border membrane vesicles to KCl, sucrose, raffinose, potassium gluconate, and N-methyl-D-glucamine hydrochloride with a light-scattering assay based on osmotic swelling. Most mutants were considerably less toxic than Cry1Aa. Replacing either E101, E116, E118, or D120 by cysteine, glutamine, or lysine residues had only minor effects on the properties of the pores formed by the modified toxins. However, half of these mutants (E101C, E101Q, E101K, E116K, E118C, and D120K) had a significantly slower rate of pore formation than Cry1Aa. Mutations at R99 (R99C, R99E, and R99Y) resulted in an almost complete loss of pore-forming ability. These results are consistent with a model in which alpha-helix 3 plays an important role in the mechanism of pore formation without being directly involved in determining the properties of the pores.  相似文献   
68.
SspB dimers bind proteins bearing the ssrA-degradation tag and stimulate their degradation by the ClpXP protease. Here, E. coli SspB is shown to contain a dimeric substrate binding domain of 110-120 N-terminal residues, which binds ssrA-tagged substrates but does not stimulate their degradation. The C-terminal 40-50 residues of SspB are unstructured but are required for SspB to form substrate-delivery complexes with ClpXP. A synthetic peptide containing the 10 C-terminal residues of SspB binds ClpX, stimulates its ATPase activity, and prevents SspB-mediated delivery of GFP-ssrA for ClpXP degradation. This tripartite structure--an ssrA-tag binding and dimerization domain, a flexible linker, and a short peptide module that docks with ClpX--allows SspB to deliver tagged substrates to ClpXP without interfering with their denaturation or degradation.  相似文献   
69.
The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation activity in the nucleus or promotion of p53 degradation in the cytoplasm. DNA damage and oncogenic insults, the two best-characterized p53-dependent checkpoint pathways, both activate p53 through inhibition of MDM2. Here we report that the human homologue of MDM2, HDM2, binds to ribosomal protein L11. L11 binds a central region in HDM2 that is distinct from the ARF binding site. We show that the functional consequence of L11-HDM2 association, like that with ARF, results in the prevention of HDM2-mediated p53 ubiquitination and degradation, subsequently restoring p53-mediated transactivation, accumulating p21 protein levels, and inducing a p53-dependent cell cycle arrest by canceling the inhibitory function of HDM2. Interference with ribosomal biogenesis by a low concentration of actinomycin D is associated with an increased L11-HDM2 interaction and subsequent p53 stabilization. We suggest that L11 functions as a negative regulator of HDM2 and that there might exist in vivo an L11-HDM2-p53 pathway for monitoring ribosomal integrity.  相似文献   
70.
LIM proteins contain one or more double zinc finger structures (LIM domains) mediating specific contacts between proteins that participate in the formation of multiprotein complexes. We report that the LIM-only protein DRAL/FHL2, with four and a half LIM domains, can associate with alpha(3A), alpha(3B), alpha(7A), and several beta integrin subunits as shown in yeast two-hybrid assays as well as after overexpression in human cells. The amino acid sequence immediately following the conserved membrane-proximal region in the integrin alpha subunits or the C-terminal region with the conserved NXXY motif of the integrin beta subunits are critical for binding DRAL/FHL2. Furthermore, the DRAL/FHL2 associates with itself and with other molecules that bind to the cytoplasmic domain of integrin alpha subunits. Deletion analysis of DRAL/FHL2 revealed that particular LIM domains or LIM domain combinations bind the different proteins. These results, together with the fact that full-length DRAL/FHL2 is found in cell adhesion complexes, suggest that it is an adaptor/docking protein involved in integrin signaling pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号